Statistical ecology, hidden Markov models and the management of large carnivores in Europe

Olivier Gimenez

https://oliviergimenez.github.io/

Statistical ecology

What is ecology?

ECOLOGY IS THE STUDY OF HOW ORGANISMS **INTERACT WITH ONE ANOTHER AND THEIR NON-**LIVING ENVIRONMENT

What is statistics?

STATISTICS: THE SCIENCE OF COLLECTING, ANALYZING AND DRAWING CONCLUSIONS FROM DATA

ECOLOGY: THE STUDY OF HOW ORGANISMS INTERACT WITH ONE ANOTHER AND THEIR NON-LIVING ENVIRONMENT

International Statistical Ecology Conference

1-4 JULY 2014 - MONTPELLIER - FRANCE

International Statistical Ecology Conference

1-4 JULY 2014 - MONTPELLIER - FRANCE

BIOLOGY LETTERS

rsbl.royalsocietypublishing.org

Cite this article: Gimenez 0 *et al.* 2014 Statistical ecology comes of age. *Biol. Lett.* **10**: 20140698.

Statistical ecology comes of age

Olivier Gimenez¹, Stephen T. Buckland², Byron J. T. Morgan³, Nicolas Bez⁴, Sophie Bertrand⁴, Rémi Choquet¹, Stéphane Dray⁵, Marie-Pierre Etienne⁶, Rachel Fewster⁷, Frédéric Gosselin⁸, Bastien Mérigot⁹, Pascal Monestiez¹⁰, Juan M. Morales¹¹, Frédéric Mortier¹², François Munoz¹³, Otso Ovaskainen¹⁴, Sandrine Pavoine^{15,16}, Roger Pradel¹, Frank M. Schurr¹⁷, Len Thomas², Wilfried Thuiller¹⁸, Verena Trenkel¹⁹, Perry de Valpine²⁰ and Eric Rexstad²

GDR 3645 Ecologie Statistique

Accueil

- ✓ Organisation
- ✓ Actions
- ✓ Ressources

Liste de diffusion

()

Annuaire

Contact

Accueil

https://sites.google.com/site/gdrecostat/

Actualités

• 9 - 10 octobre 2023 : 9èmes journées du GDR Ecologie Statistique, Villeurbanne - détails bientôt.

Le GDR EcoStat propose des actions visant à fédérer les scientifiques intéressés par le développement et l'application de méthodes et d'outils statistiques pour répondre aux questions de l'écologie et de la biologie évolutive. Il facilite le transfert de connaissances et les échanges entre biologistes de l'évolution, écologues et statisticiens afin d'améliorer l'analyse et le traitement des données biologiques.

Les principales missions du GDR EcoStat sont

i) d'évaluer les méthodes statistiques existantes,

ii) d'explorer l'application de méthodes récentes souvent inconnues des écologues et biologistes de l'évolution,

iii) de développer de nouvelles approches statistiques et

iv) d'assurer le transfert de connaissances vers les utilisateurs potentiels de ces méthodes.

Cela passe par un effort sur la communication entre les différentes <u>thématiques</u> que nous abordons, à l'intérieur du GDR mais aussi à l'extérieur avec toutes les structures ayant un lien avec l'écologie ou les statistiques.

Le GDR a été créé en janvier 2014 (renouvelé en janvier 2018 puis en 2023) et vise à fédérer les différentes forces présentes au niveau national en un réseau structuré. Il soutient l'organisation d'animations scientifiques (<u>conférence, formations, ateliers</u>, etc.) et les échanges entre laboratoires (<u>bourses de mobilité</u>, <u>annuaire</u>, etc.).

Le pilotage du GDR est assuré par son <u>bureau</u> constitué de Stéphane Dray (co-animateur), Olivier Gimenez (co-animateur), Sakina-Dorothée Ayata, Sonia Kéfi, Valentin Lauret, Marie-Pierre Etienne, François-Marie Martin, Vincent Miele, Wilfried Thuiller et Verena Trenkel.

Glouton

42 POPULATIONS IN EUROPE

Agricultural abandonment

Ungulates comeback

INTERACTIONS COME AT A COST

1. HOW MANY? 2. WHERE?

HIDDEN MARKOV MODELS

Ecological questions

1. HOW MANY? 2. WHERE?

COUNTING THINGS IS EASY... OR IS IT?

'46 SUR LES NAISSANCES, LES MARIAGES, ETC.

Population du Royaume, l'île de Corse comprise, suivant l'ordre des généralités, pendant l'année 1983.

NUMERION qui constatent fordre iles génératilies ci prosinces.	DRNOMINATION des géneralités du Royaume, l'ile de Corse comprise, distinguées en pars d'Élections ei en pars d'Életa, la ville de Parie ésant distinguée de la généralité, comme capitale du Royaume.	NAISBANCES.	MARIAGES.	PHOPERSIONS en religion.	MONTS			BACÉDENT
					dans la société cirile.	eu religion.	Total des morts.	naissances aor lea muris.
	PARIS (villo)	19 387	4875	117	18 827	126	18 953	+ 434
	Généralités en pays d'Élections.]
1	Paris	45 8oG ·	10 285		43 158	102	43 260	2516
2	Orléans	28 393	7105	26	31 803	45	31818	- 3455
1 3	Tours	49517	12121	47	61 156	96	61 251	-11 735
i 4	Poitiers	26816	6496	45	30512	48	30 560	- 3741
1 5	Bourges	22.981	4 423	17	25 687	40	25 727	- 2716
. 6	Limoges	26 516	6408	26	26 289	30	26319	197
7	La Hochelle	17 756	4 383	18	22 641	24	22 665	- 4909
: 8	Bordeaux	55 114	18 585	183	49 237	77	49314	5800
. 9	Auch	30 289	6351	31	26 379	25	26 404	3885
10	Montauban	22 240	4980	30	19679	34	19713	-1- 2527
11	Grenoble	26848	5436	34	21 982	42	22 024	-+ 4824
12	Lyon	24 218	5405	26	20 856	60	20 916	-i- 3 302
. 13	Riom	27 610	5751	33	23 265	5.1	23319	4 291
14	Moulins	26 188	5800	15	27 493	37	27 530	1 3.12
15 1	Chalous	33 101	6856	1.5	28 526	27	28553	3548
16	Le Clerniontois	1 523	286		1175	"	1175	348
: 17	Soissons	17 863	3 907		14976	31	15007	2856
18	Amiens	20 873	5318	19	19410	31	19411	1.31
19	Rouen	28 507	7266	46	25 989	72	26061	. 2 440
20	Gaen	23 000	5 705	29	23 814	47	32801	- 1871
21	Alençon	19122	5010	30	21 719	42	21 791	2009
÷	Généralités en pays d'États.							
: 22	Rennes	88 401	20 208	86	103 617	178	103 825	-15 121
23	Perpignan	7 090	1346	3	8 033	9	80.42	- 951
21	Montpellier	68 627	13976	75	59 396	145	59341	9 086
: 25	Aix	28.145	5925	27	21815	65	21881	3 561
26	Dijon	42 750	9 763	48	43 855	122	43 977	- 1 227
. 27	Besançon	28 388	5 708	31	22 090	69	27 159	6 229
28	Strasbourg	26 1 12	5 415	23	20 361	44	20 405	5737
29	Metz	14 063	2 587	19	11 521	19	11510	2 523
: 30	Nancy	33 870	6 603	113	28 050	96	28 1.46	+ 5724
31	Valenciennes	10 732	2 337	51	7817	48	7 865	·i- 2857
32	Lille	28 189	6 789	130	25 898	171	26 069	2 120
; 33	lle de Corse	5 3 49	1 068	20	4.334	25	4 3.5g	-i- 990
	Résultats du Royanme, l'île de Corse comprise	975 703	22.1 890	1.491	916421	2 081	918 500	

Osstavariosi, -- Les maladles épidemiques dont les généralités de Solssons et d'Amiens ont été affigées pendant l'année 1:51 n'ont pas continue en 1:51; mais il n'en a pas été de ménie dans les genéralités d'Uricans, de Tours, de Poulies, de Bourges, de 16 Nuchelle si d'Atenços, ou co ficau a redouble ser transpo en 1:52. La contaigion a môme gané dans les genéralités de Con et de Noulins; à l'égard de celle de Bretagne, on ne peut pas attribuer aux seules maladies epidémiques la montalité de 1;52, et elle s dé dire accrue par le passage et le sejour successif et continuel des troupes, las le terro que de mer, qui y ont cié employees, la ville de firest syant toujours cie, pendant la dernière guerre, le puis de réunion de présque lours les objourées durant August Angles.

Observations sur le preinter Tubleux relatif à la population de Paris. — Dans ce promier Tableau, qui représente les naissances, les mariages et les morts, à l'érit, depuis 171 [esqu'en 1724, la culonne horizontale du total comprend, non seulement les naissances, les mariages, les morts et les entants trouves dans ces internalie, mais encore ceux de l'année 1720, et que l'on troure à la page Alé de nos Mémoires pour l'année 1731; ainsi, cette colonne du total est relative aux quinte abnées, depuis 1730 (actuellemente met al. et encourte al.

CAPTURE-RECAPTURE: 'POPULATION IN THE KINGDOM, INCLUDING CORSICA ISLAND (...) YEAR 1783.'

Laplace 1784

Alexander Kopatz

1 1 1 1

Lucile Marescot

Sarah Cubaynes

A = alive; D = dead

A = alive; D = dead

A = alive; D = dead ϕ = survival

A = alive; D = dead ϕ = survival, p = detection

What about individual heterogeneity?

- From a *statistical* point of view, heterogeneity can induce bias in parameter estimates
- From an *ecological* point of view, heterogeneity is of interest individual quality/behavior

Sources of heterogeneity?
Sources of heterogeneity?

 In wolves, there is a social hierarchy with dominant vs. subordinate individuals.

Sources of heterogeneity?

 In wolves, there is a social hierarchy with dominant vs. subordinate individuals.

• Dominant individuals are more mobile within pack territory and more likely to mark territory with feces & urine.

Initial states

$$\begin{array}{ccc} A_1 & A_2 & D \\ \left(\pi_1 & 1 - \pi_1 & 0\right) \end{array}$$

 A_j = alive in class j; D = dead π_j = prop of individual in class j

Markov model

 A_j = alive in class j; D = dead π_j = prop of individual in class j

Moving between classes of heterogeneity

State process $\begin{array}{cccc} A_1 & A_2 & D & \texttt{t+1} \\ A_1 & \begin{pmatrix} \phi(1-\psi_{12}) & \phi\psi_{12} & 1-\phi \\ \phi\psi_{21} & \phi(1-\psi_{21}) & 1-\phi \\ 0 & 0 & 1 \end{pmatrix} \end{array}$

 A_j = alive in class j; D = dead

 ψ_{ij} transition prob between classes *i* and *j* of heterogeneity

 A_j = alive in class j; D = dead π_j = prop of individual in class j; p_j = detection in class j

Ecological questions

1. HOW MANY? 2. WHERE?

Proportion in % of France occupied by large carnivores

Proportion of area = occupancy

True occupancy = 25%

Species detection is imperfect

True occupancy = 25%

Species detected in 6 occupied sites

We underestimate occupancy

 \mathbf{O} N

True occupancy = 25%

Species detected in 6 occupied sites

Naive occupancy estimate = 6/40 = 15%

HIDDEN MARKOV MODELS

O = occupied; U = unoccupied

$$\begin{array}{c} \text{Initial states} \\ U & O \\ (1 - \psi_1 & \psi_1) \end{array}$$

O = occupied; U = unoccupied ψ_1 = occupancy

O = occupied; U = unoccupied ψ_1 = occupancy

O = occupied; U = unoccupied ψ_1 = occupancy, p = detection

Static (single-season) occupancy models

 ψ_1 = prob. a site is occupied - **occupancy**

p = prob. species is detected (given presence) – **detection**

Dynamic (multi-season) occupancy models

- ψ_1 = prob. a site is occupied **occupancy**
- p = prob. species is detected (given presence) detection γ = prob. unoccupied site becomes occupied – colonisation
- ϵ = prob. occupied site becomes unoccupied **extinction**

Dynamic occupancy model as a HMM

Markov model

hidden

LYNX DETECTIONS

SAMPLING EFFORT

TRENDS IN OCCUPANCY

Valentin Lauret

Julie Louvrier

Plan national D'ACTIONS 2018-2023 sur LE LOUP et les ACTIVITÉS D'ÉLEVAGE

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

MINISTÈRE DE L'AGRICULTURE ET DE L'ALIMENTATION

- 92 📕 MINISTÈRES TRANSITION ÉCOLOGIQUE COHÉSION DES TERRITOIRES Liberté Égalité Fraternité

DREAL BOURGOGNE-**FRANCHE-COMTÉ**

PNA LYNX

Plan National d'Actions en faveur du lynx boréal (Lynx lynx)

2022 2026

Rétablir le Lynx dans un état de conservation favorable en France

Conclusions

Why HMMs?

- Make natural distinction ecological process vs observation
- Highly modular with complexity broken in smaller problems
- Toolbox of useful methods for estimation and inference
- HMMs as a versatile modelling framework?

A few perspectives for HMMs

- Model evaluation via goodness-of-fit testing
- Continuous time, with focus on citizen science data
- HMMs used a lot in trajectometry; A framework to merge movement ecology and population dynamics?

Indicative bibliography

- Gimenez et al. (2014). Fitting occupancy models with E-SURGE: hidden Markov modelling of presence– absence data. Methods Ecol. Evol., 5, 592– 597.
- Gimenez et al. (2012). Estimating demographic parameters using hidden process dynamic models. Theor. Popul. Biol., 82, 307–316.
- Gimenez (2024?). Bayesian Analysis of Capture-Recapture Data with Hidden Markov Models: Theory and Case Studies in R and Nimble. CRC Press.
- McClintock et al. (2020). Uncovering ecological state dynamics with hidden Markov models. Ecology Letters 23: 1878-1903.
- Pradel, R. (2005). Multievent: An extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442–447.
- Zucchini, W., MacDonald, I.L. & Langrock, R. (2016). Hidden Markov Models for Time Series: An Introduction Using R, 2nd edn. Boca Raton: CRC Press.

STATISTIQUE Statistique et écologie

Approches statistiques pour les variables cachées en écologie

sous la direction de Nathalie Peyrard Olivier Gimenez

SCIENCES

STATISTICS Statistics and Ecology

Statistical Approaches for Hidden Variables in Ecology

Coordinated by Nathalie Peyrard Olivier Gimenez

WILEY

STE
