
1/33

On backward smoothing algorithms

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

June 5, 2023

2/33

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

3/33

Joint work with

Hai-Dang Dau, Oxford University

4/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

5/33

Rejection sampling

To sample from density p, with proposal q such that p(x) ≤ Cq(x):

Rejection sampling
Repeat:

Sample X ∼ q
Sample U ∼ U [0, 1]

until U ≤ p(X)/Cq(X).

The running time of this algorithm is random. It follows a
Geometric distribution with parameter 1/C .

5/33

Rejection sampling

To sample from density p, with proposal q such that p(x) ≤ Cq(x):

Rejection sampling
Repeat:

Sample X ∼ q
Sample U ∼ U [0, 1]

until U ≤ p(X)/Cq(X).

The running time of this algorithm is random. It follows a
Geometric distribution with parameter 1/C .

6/33

Random execution time

Is this a good thing, or a bad thing?

Suppose you need to run N times an algorithm with random
execution time. Then:

non-parallel implementation: total running time = sum

parallel implementation: total running time = max
Behaviour of sum/max will depend on the tails of the distribution.

6/33

Random execution time

Is this a good thing, or a bad thing?
Suppose you need to run N times an algorithm with random
execution time. Then:

non-parallel implementation: total running time = sum

parallel implementation: total running time = max
Behaviour of sum/max will depend on the tails of the distribution.

6/33

Random execution time

Is this a good thing, or a bad thing?
Suppose you need to run N times an algorithm with random
execution time. Then:

non-parallel implementation: total running time = sum

parallel implementation: total running time = max
Behaviour of sum/max will depend on the tails of the distribution.

6/33

Random execution time

Is this a good thing, or a bad thing?
Suppose you need to run N times an algorithm with random
execution time. Then:

non-parallel implementation: total running time = sum

parallel implementation: total running time = max

Behaviour of sum/max will depend on the tails of the distribution.

6/33

Random execution time

Is this a good thing, or a bad thing?
Suppose you need to run N times an algorithm with random
execution time. Then:

non-parallel implementation: total running time = sum

parallel implementation: total running time = max
Behaviour of sum/max will depend on the tails of the distribution.

7/33

Rejection sampling with random rate

Running time of rejection sampling follows a Geometric(1/M), so
exponential tails. But imagine each time you perform rejection
sampling, the target and/or the proposal change. Then running
time is a mixture of Geometric, which might have heavy tails, or
even infinite expectation.

8/33

Sampling from a distribution with support of size N

Target distribution is p(n) ∝ w(n) for n = 1, . . . ,N.

Direct method

Compute normalise weights, Wn = w(n)/
∑N

m=1 w(m).
Sample U ∼ U [0, 1].
find index k such that

∑k−1
m=1 Wm ≤ U <

∑k
m=1 Wm.

Deterministic running time, complexity O(N).

8/33

Sampling from a distribution with support of size N

Target distribution is p(n) ∝ w(n) for n = 1, . . . ,N.

Direct method

Compute normalise weights, Wn = w(n)/
∑N

m=1 w(m).
Sample U ∼ U [0, 1].
find index k such that

∑k−1
m=1 Wm ≤ U <

∑k
m=1 Wm.

Deterministic running time, complexity O(N).

9/33

Sampling from a distribution with support of size N

Rejection with uniform proposal. Requires to know C such that
w(n) ≤ C .

Rejection sampling with uniform proposal
Repeat:

Sample X ∼ U{1, . . . ,N},
Sample U ∼ U [0, 1],

Until U ≤ w(X)/C .

Complexity is OP(1).

However, probability that running time is larger than previous
algorithm is non-zero (and might be large).

9/33

Sampling from a distribution with support of size N

Rejection with uniform proposal. Requires to know C such that
w(n) ≤ C .

Rejection sampling with uniform proposal
Repeat:

Sample X ∼ U{1, . . . ,N},
Sample U ∼ U [0, 1],

Until U ≤ w(X)/C .

Complexity is OP(1).
However, probability that running time is larger than previous
algorithm is non-zero (and might be large).

9/33

Sampling from a distribution with support of size N

Rejection with uniform proposal. Requires to know C such that
w(n) ≤ C .

Rejection sampling with uniform proposal
Repeat:

Sample X ∼ U{1, . . . ,N},
Sample U ∼ U [0, 1],

Until U ≤ w(X)/C .

Complexity is OP(1).
However, probability that running time is larger than previous
algorithm is non-zero (and might be large).

10/33

Hybrid strategy

start with rejection sampling;
if no sample has been accepted after N trials, switch to direct
method.

Running time is then:
1 The min of the two approaches (up to constants)
2 random but bounded.

11/33

Relevance to particle smoothing

The particle smoothing algorithms discussed today sample
recursively from empirical distributions of size N, in order to
generate a single trajectory.

12/33

MCMC

Another example of an algorithm whose execution time is
deterministic: MCMC. However, biased?

13/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

14/33

State-space models

X0 X1 . . . XT

Y0 Y1 . . . YT

X0, . . . ,XT : unobserved, possibly non-homogeneous Markov
process
Y0, . . . ,YT : observations that are conditionally independent
given X0, . . . ,XT . Typical case: Yt is a noisy observation of
Xt

Notation X0:T := (X0, . . . ,XT), let Mt(xt−1,dxt) be the
Markov transition from Xt−1 to Xt , with probability density
mt(xt−1, xt)

15/33

Online smoothing

We wish to approximate

E[ψ0(X0) + ψ1(X0,X1) + . . .+ ψt(Xt−1,Xt)|Y0:t]

preferably in an online fashion.
Motivation 1: some SSM depends on a parameter θ, i.e.
pθ(x0:T , y0:T)

∇θ log pθ(y0:t) =
∫
∇θ log pθ(x0:t , y0:t)pθ(x0:t |y0:t)dx0:t

and

∇θ log p(x0:t , y0:t) = ∇θ[log p(x0) + log p(y0|x0)+
+
∑

s
log p(xs |xs−1) + log p(ys |xs)]

16/33

Particle filter

A particle filter creates, at each time t, a set of N particles
X 1:N

t with N (normalised) weights W 1:N
t which approximate

p(xt |y0:t): ∑
n

W n
t ϕ(Xn

t) ≈
∫

p(xt |y0:t)ϕ(xt)dxt

A particle filter is a genetic algorithm, i.e. each particle Xn
t

has an ancestor. Tracing the genealogy of a particle until time
0 gives an approximation1 of the smoothing distribution
p(x0:t |y0:t)

1Del Moral & Miclo 2001

17/33

Population degeneracy

Figure extracted from Chap. 12,
Chopin & Papaspiliopoulos 2020

A fixed population of size N
evolves from one generation
to another.
At generation t, each
individual chooses one
ancestor from generation
t − 1.
After some generations, all
individuals at time t have
the same ancestor at time 0.
Well-known phenomenon
even outside of particle filter
literature: Wright-Fisher
model, Genetic drift, etc..

18/33

Backward sampling algorithms2

.. Xt−1 Xt ..

.. Yt−1 Yt ..

p(xt−1|xt , y0:T) ∝ p(xt−1|y0:t−1)p(xt |xt−1)

≈
∑

n

W n
t−1mt(Xn

t−1, xt)∑
j W

j
t−1mt(X j

t−1, xt)
δXn

t−1

Re-use the particles involved in the approximation of the
filtering distribution p(dxt−1|y0:t−1) to approximate the
smoothing distribution p(dxt−1|y0:T).
The mixture distribution resamples a new ancestor for xt ,
instead of reusing the old ancestor.

2Godsill, Doucet, West 2004

19/33

Online smoothing recursion3

E[ψ(X0)|Y0:T] ≈
[
W 1

T . . .WN
T

]
B̂N

T B̂N
T−1 . . . B̂N

1

ψ(X 1
0)

...
ψ(XN

0)

 .
where

B̂N
t [n, n′] :=

W n′
t−1mt(Xn′

t−1,Xn
t)∑

j W
j
t−1mt(X j

t−1,Xn
t)

Translation to the matrix language of the previous slide.
We can write RHS as

[
W 1

T . . . WN
T

]
SN

T where

SN
T+1 = B̂N

T+1SN
T .

3Del Moral, Doucet, Singh 2010

20/33

Unbiased estimation of the transition matrix4

B̂N
t is a transition matrix. An unbiased sparse estimation can

be constructed as follows
For each n, sample J1

n , J2
n

iid∼ B̂N
t [n, ·].

Define a new matrix B̂N,PaRIS
t as

B̂N,PaRIS
t [n, k] :=

{
1/2 if k = J1

n or k = J2
n

0 otherwise

B̂N,PaRIS
t is sparse, accelerating the update SN

T+1 = B̂N
T+1SN

T .
Alternative view: given a particle Xn

t , resample two new
ancestors X J1

n
t−1 and X J2

n
t−1.

4Olsson & Westerborn 2017

21/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

22/33

Rejection backward sampler5

Recall that B̂N
t [n, n′] := W n′

t−1mt(Xn′
t−1,Xn

t)∑
j W j

t−1mt(X j
t−1,Xn

t)
.

Sampling from B̂N
t [n, ·] takes O(N). Running this for all n

takes O(N2).
But B̂N

t [n, •] ∝W •
t−1mt(X •t−1,Xn

t) and usually |mt | is upper
bounded.
Thus one can sample from B̂N

t using rejection sampling from
the proposal distribution W 1:N

t−1 (recall that
∑

n W n
t−1 = 1)

Sample from B̂N
t [n, ·]: using the same proposal for different

n’s.
If mt is also lower bounded away from 0, then the complexity
is reduced to O(N).

5Douc, Garivier, Moulines, Olsson 2011

23/33

Low rejection rate problem67

Even for linear Gaussian models, mt isn’t lower bounded away
from 0.
Many papers still repeat the claim that the complexity is
linear, but note that rejection sampler might work badly.
Proposed solution in the literature: stop the rejection sampler
at some threshold, then use the “naive" sampler.
Unanswered questions. What are the mathematical
properties of the execution times when mt is not bounded
away from 0? How much improvement does early stopping
bring? How should the threshold be chosen?

6Taghavi, Lindsten, Svensson, Schon 2013
7Olsson & Westerborn 2017

24/33

Our contributions

We only consider PaRIS algorithm in this slide.
Proposition 1: the expectation of the execution time for
PaRIS-reject is infinite.
Theorem 3.2: stopping the rejection sampler for each B̂N

t [n, ·]
after N trials gives an algorithm of overall complexity
O(N logd/2 N), in linear Gaussian models.

Thm 3.2 is more complicated than Prop. 1
Analysis for FFBS is more complicated than PaRIS (see
Appendix).
Choosing the threshold N is good enough.

25/33

A super-simplified example for intuition

Let X ∼ N (0, 1), then

E
[
eX2/2

]
=
∫
R
ex2/2 e−x2/2

√
2π

= +∞

but

E
[
min(eX2/2,N)

]
=
∫
R

min(ex2/2,N) 1√
2π

e−x2/2dx

=
∫
|x |≤
√

2 log N

1√
2π

dx + N
∫
|x |>
√

2 log N

1√
2π

e−x2/2dx

≤

√
4 logN
π

+ 1√
π logN

26/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

27/33

Sparse matrix estimation

Recall that we approximate B̂N
t by

B̂N,PaRIS
t [n, k] :=

{
1/2 if k = J1

n or k = J2
n

0 otherwise

Jn,1 and Jn,2 are sampled from B̂N
t [n, ·], without taking into

account the ancestor of Xn
t during the filtering step.

Alternative idea: set Jn,1 to that ancestor; move Jn,1 through
one MCMC step keeping invariant B̂N

t [n, ·], and assign the
result to Jn,2.
The algorithm is much faster than rejection sampler, even if
using early stopping:

In our experience, early stopping might take in expectation as
much as 10 or 20 trials.
Here we have 1 trial only! Even if Jn,1 = Jn,2 for a certain n
(the MCMC proposal gets rejected), that won’t be the case for
other n.

28/33

Stability of the sparse estimation

Bunch & Godsill (2013) uses this kind of MCMC step in the
offline smoother, but does not prove stability.
Proving stability, in particular non-asymptotic estimates, is
difficult due to the sparse estimation.
Olsson and Westerborn (2017) proved a CLT for PaRIS as
N →∞ and T fixed, then showed that the asymp. variance is
stable as T →∞.
It’s difficult to derive a CLT in our context since we don’t
want to impose a specified form on the MCMC kernel.
Under strong assumptions, the original matrix B̂N

t is Doeblin,
i.e. it satisfies a contraction property.

∥∥∥B̂N
t f
∥∥∥

osc
≤ ρ‖f ‖osc.

Thus the product
∏

t B̂N
t contracts exponentially fast.

Each of the matrix B̂N,PaRIS
t is sparse and no longer contracts

well. But their product is!

29/33

Our contribution: general stability theorem

Theorem
Under appropriate hypotheses, the quadratic error of the online
smoothers are bounded by

C
∑T

t=0 ‖ψt‖2∞
N

1 +

√
T
N

2

.

Applies to PaRIS, MCMC in both offline and online situations.
Consider L2 error which helps treating the aforementioned
difficulty easier.
First stability result for a truly O(N) smoother.

30/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

31/33

Numerical xp

200 800 3200 12800 51200

N

10−1

100

101

102

103

104

cp
u

ti
m

e
(s

)

O(N2) FFBS

FFBS-reject

FFBS MCMC

FFBS hybrid

Linear Gaussian state-space models, details in paper.

32/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast &
theoretically stable

5 Numerical xp

6 Conclusion

33/33

Conclusion

the running time of rejection-based particle smoothers
proposed in the literature may have infinite expectation (or
variance).

Use hybrid rejection sampler (i.e. rejection with stopping)
instead, or even better: MCMC.
See our paper arXiv 2207.00976 ; also contains a
coupling-based smoother for models with an intractable
transition density.
Some algorithms are implemented in particles (Python):
https://github.com/nchopin/particles

https://github.com/nchopin/particles

33/33

Conclusion

the running time of rejection-based particle smoothers
proposed in the literature may have infinite expectation (or
variance).
Use hybrid rejection sampler (i.e. rejection with stopping)
instead, or even better: MCMC.

See our paper arXiv 2207.00976 ; also contains a
coupling-based smoother for models with an intractable
transition density.
Some algorithms are implemented in particles (Python):
https://github.com/nchopin/particles

https://github.com/nchopin/particles

33/33

Conclusion

the running time of rejection-based particle smoothers
proposed in the literature may have infinite expectation (or
variance).
Use hybrid rejection sampler (i.e. rejection with stopping)
instead, or even better: MCMC.
See our paper arXiv 2207.00976 ; also contains a
coupling-based smoother for models with an intractable
transition density.

Some algorithms are implemented in particles (Python):
https://github.com/nchopin/particles

https://github.com/nchopin/particles

33/33

Conclusion

the running time of rejection-based particle smoothers
proposed in the literature may have infinite expectation (or
variance).
Use hybrid rejection sampler (i.e. rejection with stopping)
instead, or even better: MCMC.
See our paper arXiv 2207.00976 ; also contains a
coupling-based smoother for models with an intractable
transition density.
Some algorithms are implemented in particles (Python):
https://github.com/nchopin/particles

https://github.com/nchopin/particles

	Preliminaries
	Review of smoothing and the PaRIS algorithm
	Rejection-samplers revisited
	MCMC backward samplers: computationally fast & theoretically stable
	Numerical xp
	Conclusion

