On backward smoothing algorithms

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

June 5, 2023

1 Preliminaries

- 2 Review of smoothing and the PaRIS algorithm
- 3 Rejection-samplers revisited
- 4 MCMC backward samplers: computationally fast & theoretically stable

5 Numerical xp

6 Conclusion

Joint work with

Hai-Dang Dau, Oxford University

Outline

1 Preliminaries

- 2 Review of smoothing and the PaRIS algorithm
- 3 Rejection-samplers revisited
- 4 MCMC backward samplers: computationally fast & theoretically stable
- 5 Numerical xp

6 Conclusion

To sample from density p, with proposal q such that $p(x) \leq Cq(x)$:

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ � ◎ 5/33

Rejection sampling

Repeat:

Sample $U \sim \mathcal{U}[0,1]$

until $U \leq p(X)/Cq(X)$.

To sample from density p, with proposal q such that $p(x) \leq Cq(x)$:

Rejection sampling

Repeat:

- Sample *X* ~ *q*
- Sample $U \sim \mathcal{U}[0,1]$

until $U \leq p(X)/Cq(X)$.

The running time of this algorithm is **random**. It follows a Geometric distribution with parameter 1/C.

Random execution time

Is this a good thing, or a bad thing?

<ロ > < 母 > < 臣 > < 臣 > 三 の へ で 6/33

Is this a good thing, or a bad thing? Suppose you need to run N times an algorithm with random execution time. Then:

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 6/33

Is this a good thing, or a bad thing? Suppose you need to run N times an algorithm with random execution time. Then:

non-parallel implementation: total running time = sum

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 6/33

Is this a good thing, or a bad thing? Suppose you need to run N times an algorithm with random execution time. Then:

non-parallel implementation: total running time = sum

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

parallel implementation: total running time = max

Is this a good thing, or a bad thing? Suppose you need to run N times an algorithm with random execution time. Then:

- non-parallel implementation: total running time = sum
- parallel implementation: total running time = max

Behaviour of sum/max will depend on the tails of the distribution.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Running time of rejection sampling follows a Geometric(1/M), so exponential tails. But imagine each time you perform rejection sampling, the target and/or the proposal change. Then running time is a mixture of Geometric, which might have heavy tails, or even infinite expectation.

Sampling from a distribution with support of size N

Target distribution is $p(n) \propto w(n)$ for n = 1, ..., N.

Direct method

- Compute normalise weights, $W_n = w(n) / \sum_{m=1}^{N} w(m)$.
- Sample $U \sim \mathcal{U}[0,1]$.
- find index k such that $\sum_{m=1}^{k-1} W_m \leq U < \sum_{m=1}^k W_m$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < · 8/33

Sampling from a distribution with support of size N

Target distribution is $p(n) \propto w(n)$ for n = 1, ..., N.

Direct method

- Compute normalise weights, $W_n = w(n) / \sum_{m=1}^{N} w(m)$.
- Sample *U* ~ *U*[0, 1].
- find index k such that $\sum_{m=1}^{k-1} W_m \leq U < \sum_{m=1}^k W_m$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ (~ 8/33)

Deterministic running time, complexity $\mathcal{O}(N)$.

Rejection with uniform proposal. Requires to know C such that $w(n) \leq C$.

Rejection sampling with uniform proposal

Repeat:

• Sample
$$X \sim \mathcal{U}\{1, \ldots, N\}$$
,

Sample $U \sim \mathcal{U}[0,1]$,

Until $U \leq w(X)/C$.

Complexity is $\mathcal{O}_P(1)$.

Rejection with uniform proposal. Requires to know C such that $w(n) \leq C$.

Rejection sampling with uniform proposal

Repeat:

• Sample
$$X \sim \mathcal{U}\{1, \ldots, N\}$$
,

```
Sample U \sim \mathcal{U}[0,1],
```

Until $U \leq w(X)/C$.

Complexity is $\mathcal{O}_{\mathcal{P}}(1)$. However, probability that running time is larger than previous algorithm is non-zero (and might be large). Rejection with uniform proposal. Requires to know C such that $w(n) \leq C$.

Rejection sampling with uniform proposal

Repeat:

• Sample
$$X \sim \mathcal{U}\{1, \ldots, N\}$$
,

```
Sample U \sim \mathcal{U}[0,1],
```

Until $U \leq w(X)/C$.

Complexity is $\mathcal{O}_{\mathcal{P}}(1)$. However, probability that running time is larger than previous algorithm is non-zero (and might be large).

Hybrid strategy

- start with rejection sampling;
- if no sample has been accepted after N trials, switch to direct method.

<□ > < @ > < E > < E > E の Q @ 10/33

Running time is then:

- **1** The min of the two approaches (up to constants)
- **2** random but **bounded**.

The particle smoothing algorithms discussed today sample recursively from empirical distributions of size N, in order to generate a **single** trajectory.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q ↔ 11/33

Another example of an algorithm whose execution time is **deterministic**: MCMC. However, biased?

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

- 3 Rejection-samplers revisited
- 4 MCMC backward samplers: computationally fast & theoretically stable
- 5 Numerical xp

6 Conclusion

State-space models

- X₀,..., X_T: unobserved, possibly non-homogeneous Markov process
- Y₀,..., Y_T: observations that are conditionally independent given X₀,..., X_T. Typical case: Y_t is a noisy observation of X_t
- Notation $X_{0:T} := (X_0, ..., X_T)$, let $M_t(x_{t-1}, dx_t)$ be the Markov transition from X_{t-1} to X_t , with probability density $m_t(x_{t-1}, x_t)$

Online smoothing

We wish to approximate

$$\mathbb{E}[\psi_0(X_0) + \psi_1(X_0, X_1) + \ldots + \psi_t(X_{t-1}, X_t)|Y_{0:t}]$$

preferably in an online fashion.

Motivation 1: some SSM depends on a parameter θ, i.e.
p_θ(x_{0:T}, y_{0:T})

$$\nabla_{\theta} \log p_{\theta}(y_{0:t}) = \int \nabla_{\theta} \log p_{\theta}(x_{0:t}, y_{0:t}) p_{\theta}(x_{0:t}|y_{0:t}) \mathrm{d}x_{0:t}$$

and

$$\nabla_{\theta} \log p(x_{0:t}, y_{0:t}) = \nabla_{\theta} [\log p(x_0) + \log p(y_0|x_0) + \sum_{s} \log p(x_s|x_{s-1}) + \log p(y_s|x_s)]$$

Particle filter

• A particle filter creates, at each time t, a set of N particles $X_t^{1:N}$ with N (normalised) weights $W_t^{1:N}$ which approximate $p(x_t|y_{0:t})$:

$$\sum_{n} W_{t}^{n} \varphi(X_{t}^{n}) \approx \int p(x_{t} | y_{0:t}) \varphi(x_{t}) \mathrm{d}x_{t}$$

• A particle filter is a genetic algorithm, i.e. each particle X_t^n has an *ancestor*. Tracing the genealogy of a particle until time 0 gives an approximation¹ of the smoothing distribution $p(x_{0:t}|y_{0:t})$

Population degeneracy

Figure extracted from Chap. 12, Chopin & Papaspiliopoulos 2020

- A fixed population of size N evolves from one generation to another.
- At generation *t*, each individual chooses *one* ancestor from generation *t* - 1.
- After some generations, all individuals at time t have the same ancestor at time 0.
- Well-known phenomenon even outside of particle filter literature: Wright-Fisher model, Genetic drift, etc..

Backward sampling algorithms²

$$\begin{array}{c} \cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow \cdots \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \cdots \qquad Y_{t-1} \qquad Y_t \qquad \cdots \end{array}$$

$$p(x_{t-1}|x_t, y_{0:T}) \propto p(x_{t-1}|y_{0:t-1})p(x_t|x_{t-1}) \\ \approx \sum_n \frac{W_{t-1}^n m_t(X_{t-1}^n, x_t)}{\sum_j W_{t-1}^j m_t(X_{t-1}^j, x_t)} \delta_{X_{t-1}^n}$$

- Re-use the particles involved in the approximation of the filtering distribution $p(dx_{t-1}|y_{0:t-1})$ to approximate the smoothing distribution $p(dx_{t-1}|y_{0:T})$.
- The mixture distribution resamples a new ancestor for x_t , instead of reusing the old ancestor. <□▶ < @▶ < ≧▶ < ≧▶ E のQで 18/33

²Godsill, Doucet, West 2004

Online smoothing recursion³

$$\mathbb{E}[\psi(X_0)|Y_{0:T}] \approx \left[W_T^1 \dots W_T^N\right] \hat{B}_T^N \hat{B}_{T-1}^N \dots \hat{B}_1^N \begin{bmatrix} \psi(X_0^1) \\ \vdots \\ \psi(X_0^N) \end{bmatrix}.$$

where

$$\hat{B}_t^N[n,n'] := \frac{W_{t-1}^{n'}m_t(X_{t-1}^{n'},X_t^n)}{\sum_j W_{t-1}^jm_t(X_{t-1}^j,X_t^n)}$$

- Translation to the matrix language of the previous slide.
- We can write RHS as $\begin{bmatrix} W_T^1 & \dots & W_T^N \end{bmatrix} S_T^N$ where

$$S_{T+1}^N = \hat{B}_{T+1}^N S_T^N.$$

Unbiased estimation of the transition matrix⁴

- \hat{B}_t^N is a transition matrix. An unbiased sparse estimation can be constructed as follows
- For each *n*, sample $J_n^1, J_n^2 \stackrel{\text{iid}}{\sim} \hat{B}_t^N[n, \cdot]$.
- Define a new matrix $\hat{B}_t^{N,\mathrm{PaRIS}}$ as

$$\hat{B}_t^{N,\mathrm{PaRIS}}[n,k] := egin{cases} 1/2 & ext{if } k = J_n^1 ext{ or } k = J_n^2 \ 0 & ext{otherwise} \end{cases}$$

\$\hbegin{smallmatrix} \hat{B}_t^{N, \text{PaRIS}}\$ is sparse, accelerating the update \$S_{T+1}^N = \hbegin{smallmatrix} B_{T+1}^N S_T^N\$.
Alternative view: given a particle \$X_t^n\$, resample two new ancestors \$X_{t-1}^{J_n^1}\$ and \$X_{t-1}^{J_n^2}\$.

⁴Olsson & Westerborn 2017

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast & theoretically stable

5 Numerical xp

6 Conclusion

Rejection backward sampler⁵

• Recall that
$$\hat{B}_t^N[n,n'] := rac{W_{t-1}^{n'}m_t(X_{t-1}^{n'},X_t^n)}{\sum_j W_{t-1}^jm_t(X_{t-1}^j,X_t^n)}.$$

- Sampling from $\hat{B}_t^N[n, \cdot]$ takes $\mathcal{O}(N)$. Running this for all n takes $\mathcal{O}(N^2)$.
- But $\hat{B}_t^N[n, \bullet] \propto W_{t-1}^{\bullet} m_t(X_{t-1}^{\bullet}, X_t^n)$ and usually $|m_t|$ is upper bounded.
- Thus one can sample from \hat{B}_t^N using rejection sampling from the proposal distribution $W_{t-1}^{1,N}$ (recall that $\sum_n W_{t-1}^n = 1$)
- Sample from $\hat{B}_t^N[n, \cdot]$: using the same proposal for different n's.
- If m_t is also lower bounded away from 0, then the complexity is reduced to $\mathcal{O}(N)$.

Low rejection rate problem⁶⁷

- Even for linear Gaussian models, m_t isn't lower bounded away from 0.
- Many papers still repeat the claim that the complexity is linear, but note that rejection sampler might work badly.
- Proposed solution in the literature: stop the rejection sampler at some threshold, then use the "naive" sampler.
- Unanswered questions. What are the mathematical properties of the execution times when m_t is not bounded away from 0? How much improvement does early stopping bring? How should the threshold be chosen?

⁷Olsson & Westerborn 2017

⁶Taghavi, Lindsten, Svensson, Schon 2013 ◆□▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ E の Q @ 23/33

Our contributions

- We only consider PaRIS algorithm in this slide.
- Proposition 1: the expectation of the execution time for PaRIS-reject is infinite.
- Theorem 3.2: stopping the rejection sampler for each B^N_t[n, ·] after N trials gives an algorithm of overall complexity O(N log^{d/2} N), in linear Gaussian models.
- Thm 3.2 is more complicated than Prop. 1
- Analysis for FFBS is more complicated than PaRIS (see Appendix).
- Choosing the threshold *N* is good enough.

A super-simplified example for intuition

Let $X \sim \mathcal{N}(0,1)$, then

$$\mathbb{E}\left[e^{X^2/2}\right] = \int_{\mathbb{R}} e^{x^2/2} \frac{e^{-x^2/2}}{\sqrt{2\pi}} = +\infty$$

but

$$\mathbb{E}\left[\min(e^{X^2/2}, N)\right] = \int_{\mathbb{R}} \min(e^{x^2/2}, N) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x$$
$$= \int_{|x| \le \sqrt{2\log N}} \frac{1}{\sqrt{2\pi}} \mathrm{d}x + N \int_{|x| > \sqrt{2\log N}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x$$
$$\le \sqrt{\frac{4\log N}{\pi}} + \frac{1}{\sqrt{\pi\log N}}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 25/33

Outline

1 Preliminaries

2 Review of smoothing and the PaRIS algorithm

3 Rejection-samplers revisited

4 MCMC backward samplers: computationally fast & theoretically stable

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 26/33

5 Numerical xp

6 Conclusion

Sparse matrix estimation

• Recall that we approximate \hat{B}_t^N by

$$\hat{B}_t^{N,\mathrm{PaRIS}}[n,k] := egin{cases} 1/2 & ext{if } k = J_n^1 ext{ or } k = J_n^2 \ 0 & ext{otherwise} \end{cases}$$

- $J^{n,1}$ and $J^{n,2}$ are sampled from $\hat{B}_t^N[n, \cdot]$, without taking into account the ancestor of X_t^n during the filtering step.
- Alternative idea: set $J^{n,1}$ to that ancestor; move $J^{n,1}$ through one MCMC step keeping invariant $\hat{B}_t^N[n, \cdot]$, and assign the result to $J^{n,2}$.
- The algorithm is much faster than rejection sampler, even if using early stopping:
 - In our experience, early stopping might take in expectation as much as 10 or 20 trials.
 - Here we have 1 trial only! Even if J^{n,1} = J^{n,2} for a certain n (the MCMC proposal gets rejected), that won't be the case for other n.

Stability of the sparse estimation

- Bunch & Godsill (2013) uses this kind of MCMC step in the offline smoother, but does not prove stability.
- Proving stability, in particular non-asymptotic estimates, is difficult due to the sparse estimation.
- Olsson and Westerborn (2017) proved a CLT for PaRIS as $N \rightarrow \infty$ and T fixed, then showed that the asymp. variance is stable as $T \rightarrow \infty$.
- It's difficult to derive a CLT in our context since we don't want to impose a specified form on the MCMC kernel.
- Under strong assumptions, the original matrix \hat{B}_t^N is Doeblin, i.e. it satisfies a contraction property. $\|\hat{B}_t^N f\|_{osc} \leq \rho \|f\|_{osc}$.
- Thus the product $\prod_t \hat{B}_t^N$ contracts exponentially fast.
- Each of the matrix B^{N,PaRIS} is sparse and no longer contracts well. But their product is!

Theorem

Under appropriate hypotheses, the quadratic error of the online smoothers are bounded by

$$\frac{C\sum_{t=0}^{T} \|\psi_t\|_{\infty}^2}{N} \left(1 + \sqrt{\frac{T}{N}}\right)^2.$$

- Applies to PaRIS, MCMC in both offline and online situations.
- Consider L² error which helps treating the aforementioned difficulty easier.
- First stability result for a truly $\mathcal{O}(N)$ smoother.

Outline

1 Preliminaries

- 2 Review of smoothing and the PaRIS algorithm
- 3 Rejection-samplers revisited
- 4 MCMC backward samplers: computationally fast & theoretically stable

5 Numerical xp

6 Conclusion

Numerical xp

Linear Gaussian state-space models, details in paper.

Outline

1 Preliminaries

- 2 Review of smoothing and the PaRIS algorithm
- 3 Rejection-samplers revisited
- 4 MCMC backward samplers: computationally fast & theoretically stable

5 Numerical xp

6 Conclusion

the running time of rejection-based particle smoothers proposed in the literature may have infinite expectation (or variance).

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 33/33)

- the running time of rejection-based particle smoothers proposed in the literature may have infinite expectation (or variance).
- Use hybrid rejection sampler (i.e. rejection with stopping) instead, or even better: MCMC.

- the running time of rejection-based particle smoothers proposed in the literature may have infinite expectation (or variance).
- Use hybrid rejection sampler (i.e. rejection with stopping) instead, or even better: MCMC.
- See our paper arXiv 2207.00976; also contains a coupling-based smoother for models with an intractable transition density.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで 33/33

- the running time of rejection-based particle smoothers proposed in the literature may have infinite expectation (or variance).
- Use hybrid rejection sampler (i.e. rejection with stopping) instead, or even better: MCMC.
- See our paper arXiv 2207.00976; also contains a coupling-based smoother for models with an intractable transition density.
- Some algorithms are implemented in particles (Python): https://github.com/nchopin/particles