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1. INTRODUCTION
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INTRODUCTION

@ Semi-Markov processes are an important tool in modeling real
systems.

@ Our starting point is the article of Pérez-Océn and
Torres-Castrol.

@ Repairable system with internal and external failures and
possible performance decrease after maintenance.

@ New calculation method for reliability measures calculation.

!Pérez-Océn and Torres-Castro (2002)
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2. MODEL ASSUMPTIONS
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MODEL ASSUMPTIONS

One component system with two states (up and down)

Down state refers to maintenance duration period

Two failure types: internal and external.

All failures occur independently of each other.

Internal failure occurs by aging

External failure arrivals : Homogeneous Poisson Process
Repairable failure with probability p

Instantaneous perfect maintenance after non repairable

failures or after N repairs of repairable failures.

P

H External ~ P(A) ‘
q - .
Failure IH Non repairahle ‘

% Non repairable ‘

Figure: System Failures
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F' the CDF of a new system with finite mean,
@ The system deteriorates after each repair
e U;: lifetime of the system after the i-th repairs with F; as
CDF: ‘
Fi(z)=P(U; <z) = F(a'z),z =20
where a is the operational factor .
@ ( the CDF of first repair duration with finite mean
@ D;: repair duration after its i-th failures with G; as CDF:

Gi(z) = P(D; < z) = G(b'z), 2 > 0

where b the repair factor.
@ U; and D; are independent

@ (U;)ien and (D;)ien are independent but not identically
distributed sequences.
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e Up states U = {0/, 1',2,..., N’} where the state 0' is perfect.
e Down states D = {0",1”,2",..., N — 1"},

@ One considers a process with state space
E={0,0",11",..,N-—1,N—-1" N},

Transition of the system is presented in next figure.

Figure: System Transition
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3. SEMI-MARKOV PROCESS
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SEMI-MARKOV PROCESS (SMP)

@ Semi-Markov Process (Z;)i>0, with finite state space E,
e Embaedded Markov Renewable Process (MRP) (Jy,, Sp)nen,
@ (Jn)nen is the Embedded Markov Chain (EMC)

@ S5o=0<S51 <85 <---< 8, <--- the jJump times that
(Z¢)t=0 changes the states:

Zt = Jn7 Sn <t < Sn+1
@ Semi-Markov kernel
Qij() = P(Jns1 = j; Sns1 — Sn < @I = i)

fori,je E,z = 0.
e Standard SMP with Q;i(z) = 0.
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SEMI-MARKOV KERNEL
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In standard form, we have the Semi-Markov Kernel is Q(x),z = 0

. Qoror .
0 0 0 T=Poror 0 0
Qo 0 - 0 0 Quur - 0
Qn_10 0 0 0 0 QNn_1N_17
Qnror 0 0 0 0 0
0 Qo1 0 0 0 0
0 0 cor QN_1r N 0 0 0
_ ( Qo | Qo1 )
QIO Ql
Where

Qo includes transitions from up states U to up states U;

@1 includes transitions from down states D to down states D;
Qo1 includes transitions from up states U to down states D;
Q10 includes transitions from down states D to up states U.
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Semi-Markov Kernel

e From 7’ to state i”: the system fails externally and repaired.

Qirin () = Lx e Mp(1 — F(a't))dt, ie{0,---,N —1}

@ Return to initial perfect state: the system has to be replaced
by a new one, which means it fails with an internal failure or
an non-repairable external failure.

Quoy(a) = fo e = p)(1 - F(att))dt

+J e MdF(ait), ie€{0,--- N -1}
0

o To state ¢ + 1/, a repairman repairs the system.
Qi”i-i-l’(x) = G(bzl’), L€ {07 7N_1}
o After N repairs, we replace the system directly.

Qi () = JO e M(1 — F(a't))dt + f e MdF(a't)
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EMBEDDED MARKOV CHAIN

The EMC (J,,)nen gives the successive visited states by the
SMP(Z;) after n'* jump. The transition matrix P = (P;;;i,j € F)
is Pjj = limge Qij(z) = Q45(c0).

0 0 O 01 0 0 0

Pro 0 0 010 Puyw 0 .- 0

PQI()/ O 0 O 0 O P2/2// A O

P— Py_1¢90 0 O 0[]0 0 0 Pyn_1vin_1r

o 1 0 0 010 0 0 0

0 1 0 00 0 0 0

0 0 1 00 0 0 0

0 0 0 110 0 0 0
_(_Po | Pn
P | P

The Stationary law is p= (po’a Ct S PN PO aprl”) = (pla p”)
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4. RELIABILITY
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RELIABILITY

Initial law of SMP
o = (Oé()/,"‘ sy N7, Qg = o e 7aN—l”) = (a())al)

The distribution function of sojourn time in state i: H;(t)

3 Qilt) = 1~ H(1)

JjeE
1— QO/O//(t)
Hy (t) 1=Porgr
) 1= Qo (t) — Qun(t)
— Hpy/(t :
H(t) = ]\6( |- 1= Qo ()
0
0 0
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The mean sojourn time in each state is

myy

mo mpyv
m = = E——
ma mon

my_ 1

For Up state, we have
§o Ho (t)dt
§o Hy(t)dt
mg =
S Hy—_v(t)dt
§o Hy(t)dt
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We also present the stationary distribution 7 of the SMP (Z;) as
follows

Pim;
Ty o= ———

m
where the mean sojourn time of the system is
mim Y pam,
i€l

Here we will suppose that the semi-Markov kernel (Q;;) has
derivatives (Radon-Nikodym)

C.h]( ) 1= Qw( )

The Markov renewal function is expressed as

D(t) == (I — Q) V()
If we put the Markov renewal function % in bloc matrix form,
following the partition U and D of E, we have

v = (0w
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RELIABILITY FUNCTIONS

The reliability function of the system is:
R(t) = ao(I — Qo)™ Y » Ho(t)
The instantaneous availability is
Alt) = a(l = Q)Y « H(t)

Mean times:
MTTF = ap(I — Py) " 'm

MTTR = o1(I — P)"'my

™M
MUT = ——
w1 Proly
MDT — ™11
o o1 14—

Rate of Occurrence of failure:
ro(t) = aptho * qo1(t) Lg—r + 1910 * go1(t) Lg—,
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After algebra convolution calculation, we have some final results
presented here.
Reliability R(t) = Z ayHy (t) + Z ayQuo * Hy(t)

1=0 i=1

Availability
. N _
A(t) = oy (det(I— Q)Y (Hy + Y Xoj# Hy )+, ap(det(I—Q)) 1 %
j=1

(Xt Xw « Hy + YN (1— X,--) *ﬁ) + g (det(I — Q)1 e (2o

1—Pyrqor

HO” + Z Qj/]” >X<)(07 * H; //) =+ Z Oé,L//(det([ Q))( 1) Q%g/l;/ * X0 *HO/’ +

ZN_l Oq//(det(l Q))( R QJ/ i ¥ (Zl b Xij * Hyr + Zi:l(l — Xij) * Hyn)
_ X pimy
Stationary Availability A = Y, m; = U

€U

m

Mean Time to Failure MTTF = agmqg + Z o (Mo Pyror + M)

i=1

Mean Time to Repair MTTR = Z Qg

=0
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2
Mean Up Time MUT = W

1
> pinmgn
i=0

NZ_ Pi//m?u
Mean Down Time M DT = :1\,7
Z Py

-

If the system begins with perfect state, we have
Reliability R(t) = Hy =1 — ("193’;%”(”
o’o’

I N _
Availability A(t) = (det(I — Q)Y « (Hy + 3. Xoj * Hyr)
j=1

Mean Time to Failure MTTFEF = my
Rate of Occurrence of failure

N—
— qo’o"
ro(t) = (det(I — Q)Y % (1_0;30/0/ ; Xoj * 4y1; )
Z piPi’i”
lim ro(t) = Y
t—00 m
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5. NUMERICAL EXAMPLES
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EXAMPLE 1

The lifetime of system follows Weilbull distribution F' ~ W (a, 3),
same distribution for repair duration G ~ W (ay, 1)

Parameters | Value
0.02/h

0.87
1
1.5

A
p
o
B
aq 1
P
a
b
N

0.9
1.25
0.9
3
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7= (0.3273 0.2870 0.0031 0.0000 | 0.3770 0.0055 0.0001 )

0.8682 m 0.8682

0.7612 MTTF 0.8682

0.6107 MTTR 0

m=| 04896 |, | MUT 1.3185
71.0000 MDT 1.1574

1.1111 A 0.6174

1.2346 tlirglo ro(t) | 0.3820
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(d) Reliability with Uniform initial law
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EXAMPLE 2

The lifetime of system follows PH distribution with representation
U; ~ Ph(a, a'T), and same distribution for repair time
D; ~ Ph(B,b'S)

Parameters | Value

A 0.02/h

P 0.87

« [100]

B [100]

a 1.25

b 0.9

N 3

—0.001 0.001 0 -0.5 0.5 0

T= 0 —0.08 0.08 , S= 0.01 —0.08 0.07
0 0 —0.01 0.005 0 -0.2
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7r=(0.2630 0.2642 0.2235 0.1869 | 0.0220 0.0208 0.0196)

48.8302
49.0574
48.6301
48.0516

4.0817

4.5352
5.0391

m 30.1861
MTTF 48.8302
MTTR 0
MUT 731.2785
MDT 0.4177
A 0.93866
lim ro(t) 0.0139
t—>00
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Figure: Example 2
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6. CONCLUSIONS
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CONCLUSION

@ Extension of state space allows us to obtain reliability
indicators in a standard way.

@ Convolution algebra allows us to obtain closed form solution
for reliability and non stationary indicators.

o Consideration of duration time of replacement in the future.

o Consideration of repairman replacement in the future.
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