A SEMI-MARKOV MODEL WITH GEOMETRIC RENEWAL PROCESSES

Jingqi Zhang, Mitra Fouladirad, Nikolaos Limnios

Université de Technologie de Troyes, France Ecole Centrale Marseille, Aix Marseille Université, France Université de Technologie de Compiègne, France

- Introduction
- Ø Model assumptions
- Semi-Markov Process
- Reliability and related measures (Dependency)
- O Numerical examples
- Onclusion

回 とう モン・モン

1. INTRODUCTION

Ð,

- Semi-Markov processes are an important tool in modeling real systems.
- Our starting point is the article of Pérez-Ocón and Torres-Castro¹.
- Repairable system with internal and external failures and possible performance decrease after maintenance.
- New calculation method for reliability measures calculation.

¹Pérez-Ocón and Torres-Castro (2002)

2. Model assumptions

MODEL ASSUMPTIONS

- One component system with two states (up and down)
- Down state refers to maintenance duration period
- Two failure types: internal and external.
- All failures occur independently of each other.
- Internal failure occurs by aging
- External failure arrivals : Homogeneous Poisson Process
- Repairable failure with probability p
- Instantaneous perfect maintenance after non repairable failures or after N repairs of repairable failures.

- F the CDF of a new system with finite mean,
- The system deteriorates after each repair
- U_i : lifetime of the system after the *i*-th repairs with F_i as CDF:

$$F_i(x) = P(U_i \le x) = F(a^i x), x \ge 0$$

where \boldsymbol{a} is the operational factor .

- $\bullet~G$ the CDF of first repair duration with finite mean
- D_i : repair duration after its *i*-th failures with G_i as CDF:

$$G_i(x) = P(D_i \leqslant x) = G(b^i x), x \ge 0$$

where b the repair factor.

- U_i and D_i are independent
- $(U_i)_{i\in\mathbb{N}}$ and $(D_i)_{i\in\mathbb{N}}$ are independent but not identically distributed sequences.

- Up states $U = \{0', 1', 2', ..., N'\}$ where the state 0' is perfect.
- Down states $D = \{0'', 1'', 2'', ..., N 1''\}$,
- One considers a process with state space $E = \{0', 0'', 1', 1'', ..., N 1', N 1'', N'\},\$

Transition of the system is presented in next figure.

Figure: System Transition

3. Semi-Markov Process

æ

SEMI-MARKOV PROCESS (SMP)

- Semi-Markov Process $(Z_t)_{t \ge 0}$, with finite state space E,
- Embaedded Markov Renewable Process (MRP) $(J_n, S_n)_{n \in \mathbb{N}}$,
- $(J_n)_{n\in\mathbb{N}}$ is the Embedded Markov Chain (EMC)
- $S_0 = 0 < S_1 < S_2 < \cdots < S_n < \cdots$ the jump times that $(Z_t)_{t \ge 0}$ changes the states:

$$Z_t = J_n, \quad S_n \leqslant t < S_{n+1}$$

Semi-Markov kernel

$$Q_{ij}(x) = \mathbb{P}(J_{n+1} = j, S_{n+1} - S_n \leqslant x | J_n = i)$$

for $i, j \in E, x \ge 0$.

• Standard SMP with $Q_{ii}(x) \equiv 0$.

Semi-Markov Kernel

In standard form, we have the Semi-Markov Kernel is $Q(x), x \ge 0$

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & \frac{Q_{0'0''}}{1-P_{0'0'}} & 0 & \cdots & 0 \\ Q_{1'0'} & 0 & \cdots & 0 & 0 & Q_{1'1''} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ Q_{N-1'0'} & 0 & \cdots & 0 & 0 & 0 & \cdots & Q_{N-1'N-1''} \\ Q_{N'0'} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \hline 0 & Q_{0''1'} & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q_{N-1''N'} & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= \left(\begin{array}{c|c} Q_0 & Q_{01} \\ \overline{Q_{10} & Q_1} \end{array} \right)$$

Where

 Q_0 includes transitions from up states U to up states U;

 Q_1 includes transitions from down states D to down states D;

 Q_{01} includes transitions from up states U to down states D;

 Q_{10} includes transitions from down states D to up states U.

Semi-Markov Kernel

• From i' to state i'': the system fails externally and repaired.

$$Q_{i'i''}(x) = \int_0^x \lambda e^{-\lambda t} p(1 - F(a^i t)) dt, \quad i \in \{0, \cdots, N-1\}$$

 Return to initial perfect state: the system has to be replaced by a new one, which means it fails with an internal failure or an non-repairable external failure.

$$Q_{i'0'}(x) = \int_0^x \lambda e^{-\lambda t} (1-p)(1-F(a^i t))dt + \int_0^x e^{-\lambda t} dF(a^i t), \quad i \in \{0, \cdots, N-1\}$$

• To state i + 1', a repairman repairs the system.

$$Q_{i''i+1'}(x) = G(b^i x), \quad i \in \{0, \cdots, N-1\}$$

• After N repairs, we replace the system directly.

$$Q_{N'0'}(x) = \int_0^x \lambda e^{-\lambda t} (1 - F(a^i t)) dt + \int_0^x e^{-\lambda t} dF(a^i t)$$

Embedded Markov Chain

The EMC $(J_n)_{n\in\mathbb{N}}$ gives the successive visited states by the SMP (Z_t) after n^{th} jump. The transition matrix $\mathbf{P} = (P_{ij}; i, j \in E)$ is $P_{ij} = \lim_{x\to\infty} Q_{ij}(x) = Q_{ij}(\infty)$.

The stationary law is $\rho = (\rho_{0'}, \cdots, \rho_{N'}, \rho_{0''}, \cdots, \rho_{N-1''}) = (\rho', \rho'')$

4. Reliability

Initial law of SMP

$$\boldsymbol{\alpha} = (\alpha_{0'}, \cdots, \alpha_{N'}, \alpha_{0''}, \cdots, \alpha_{N-1''}) = (\boldsymbol{\alpha_0}, \boldsymbol{\alpha_1})$$

The distribution function of sojourn time in state *i*: $H_i(t)$

$$\sum_{j \in E} Q_{ij}(t) = 1 - \overline{H_i}(t)$$

$$\overline{H}(t) = \begin{pmatrix} \overline{H_{0'}}(t) \\ \vdots \\ \overline{H_{N'}}(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 - \frac{Q_{0'0''}(t)}{1 - P_{0'0'}} \\ 1 - Q_{0'1'}(t) - Q_{1'1''}(t) \\ \vdots \\ 1 - Q_{N'0'}(t) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

크

The mean sojourn time in each state is

$$\boldsymbol{m} = \left(\frac{\boldsymbol{m}_0}{\boldsymbol{m}_1}\right) = \begin{pmatrix} m_{0'} \\ \vdots \\ \frac{m_{N'}}{m_{0''}} \\ \vdots \\ m_{N-1''} \end{pmatrix}$$

For Up state, we have

$$\boldsymbol{m_0} = \begin{pmatrix} \int_0^\infty \overline{H_{0'}}(t)dt \\ \int_0^\infty \overline{H_{1'}}(t)dt \\ \vdots \\ \int_0^\infty \overline{H_{N-1'}}(t)dt \\ \int_0^\infty \overline{H_{N'}}(t)dt \end{pmatrix}$$

We also present the stationary distribution π of the SMP (Z_t) as follows

$$\pi_i := \frac{\rho_i m_i}{m}$$

where the mean sojourn time of the system is

$$m := \sum_{i \in E} \rho_i m_i$$

Here we will suppose that the semi-Markov kernel (Q_{ij}) has derivatives (Radon-Nikodym)

$$q_{ij}(t) := \frac{\mathrm{d}}{\mathrm{d}t} Q_{ij}(t)$$

The Markov renewal function is expressed as

$$\psi(t) := (I - Q)^{(-1)}(t)$$

If we put the Markov renewal function ψ in bloc matrix form, following the partition U and D of E, we have

$$\psi(t) = \begin{pmatrix} \psi_0 & \psi_{01} \\ \psi_{10} & \psi_1 \end{pmatrix} (t)$$

RELIABILITY FUNCTIONS

The reliability function of the system is:

$$R(t) = \boldsymbol{\alpha}_{\mathbf{0}}(I - Q_0)^{(-1)} * \overline{H_0}(t)$$

The instantaneous availability is

$$A(t) = \alpha (I - Q)^{(-1)} * \overline{H}(t)$$

Mean times:

$$MTTF = \boldsymbol{\alpha}_{0}(I - P_{0})^{-1}\boldsymbol{m}_{0}$$
$$MTTR = \boldsymbol{\alpha}_{1}(I - P_{1})^{-1}\boldsymbol{m}_{1}$$
$$MUT = \frac{\boldsymbol{\pi}_{0}\boldsymbol{m}_{0}}{\boldsymbol{\pi}_{1}P_{10}\mathbb{1}_{r}}$$
$$MDT = \frac{\boldsymbol{\pi}_{1}\boldsymbol{m}_{1}}{\boldsymbol{\pi}_{0}P_{01}\mathbb{1}_{d-r}}$$

Rate of Occurrence of failure:

$$ro(t) = \alpha_0 \psi_0 * q_{01}(t) \mathbb{1}_{d-r} + \alpha_1 \psi_{10} * q_{01}(t) \mathbb{1}_{d-r}$$

After algebra convolution calculation, we have some final results presented here.

$$\begin{array}{l} \text{Reliability } R(t) = \sum\limits_{i=0}^{N} \alpha_{i'} \overline{H_{0'}(t)} + \sum\limits_{i=1}^{N} \alpha_{i'} Q_{i'0'} * \overline{H_{i'}(t)} \\ \text{Availability} \\ A(t) = \alpha_{0'} (det(I-Q))^{(-1)} * (\overline{H_{0'}} + \sum\limits_{j=1}^{N} X_{0j} * \overline{H_{j'}}) + \sum\limits_{i=1}^{N} \alpha_{i'} (det(I-Q))^{(-1)} * (\sum\limits_{j=0}^{i-1} X_{ij} * \overline{H_{j'}} + \sum\limits_{i=1}^{N} (1 - X_{ij}) * \overline{H_{j'}}) + \alpha_{0''} (det(I-Q))^{(-1)} * (\frac{Q_{0'0''}}{1 - P_{0'0'}} * \overline{H_{0''}} + \sum\limits_{j=1}^{N-1} Q_{j'j''} * X_{0j} * \overline{H_{j''}}) + \sum\limits_{i=1}^{N-1} \alpha_{i''} (det(I-Q))^{(-1)} * \frac{Q_{0'0''}}{1 - P_{0'0'}} * X_{i0} * \overline{H_{0''}} + \sum\limits_{i=1}^{N-1} \alpha_{i''} (det(I-Q))^{(-1)} * Q_{j'j''} * (\sum\limits_{j=0}^{i-1} X_{ij} * \overline{H_{j''}}) + \sum\limits_{i=1}^{N-1} \alpha_{i''} (det(I-Q))^{(-1)} * \overline{H_{j''}}) \\ \text{Stationary Availability } \overline{A} = \sum\limits_{i\in U} \pi_i = \frac{\sum\limits_{i\in U}^{i\subseteq P} \rho_{i}m_i}{m} \\ \text{Mean Time to Failure } MTTF = \alpha_{0'}m_{0'} + \sum\limits_{i=1}^{N} \alpha_{i'0'} (m_{0'}P_{i'0'} + m_{i'}) \\ N-1 \end{array}$$

Mean Time to Repair $MTTR = \sum\limits_{i=0} \, \alpha_{i''} m_{i''}$

크

Mean Up Time $MUT = \frac{\sum_{i=0}^{N} \rho_{i'} m_{i'}^2}{\sum_{i=0}^{N-1} \rho_{i''} m_{i''}}$ Mean Down Time $MDT = \frac{\sum_{i=0}^{N-1} \rho_{i''} m_{i''}^2}{\sum_{i=0}^{N} \rho_{i'} m_{i'}}$ If the system begins with perfect state, we have Reliability $R(t) = \overline{H_{0'}} = 1 - \frac{Q_{0'0''}(t)}{1 - P_{0'0'}}$ Availability $A(t) = (det(I - Q))^{(-1)} * (\overline{H_{0'}} + \sum_{j=1}^{N} X_{0j} * \overline{H_{j'}})$ Mean Time to Failure $MTTF = m_{0'}$ Rate of Occurrence of failure

$$ro(t) = (det(I-Q))^{(-1)} * \left(\frac{q_{0'0''}}{1-P_{0'0'}} + \sum_{j=1}^{N-1} X_{0j} * q_{j'j''}\right)$$
$$\lim_{t \to \infty} ro(t) = \frac{\sum_{i \in U} \rho_i P_{i'i''}}{m}$$

5. Numerical Examples

The lifetime of system follows Weilbull distribution $F \sim W(\alpha, \beta)$, same distribution for repair duration $G \sim W(\alpha_1, \beta_1)$

Parameters	Value		
λ	0.02/h		
p	0.87		
α	1		
β	1.5		
α_1	1		
β_1	0.9		
a	1.25		
b	0.9		
N	3		

 $\pi = (0.3273 \ 0.2870 \ 0.0031 \ 0.0000 \ 0.3770 \ 0.0055 \ 0.0001)$

$$\boldsymbol{m} = \begin{pmatrix} 0.8682\\ 0.7612\\ 0.6107\\ 0.4896\\ \hline 1.0000\\ 1.1111\\ 1.2346 \end{pmatrix}, \quad \begin{array}{c|cccc} m & 0.8682\\ \hline MTTF & 0.8682\\ \hline MTTR & 0\\ \hline MUT & 1.3185\\ \hline MDT & 1.1574\\ \hline \overline{A} & 0.6174\\ \hline \lim_{t\to\infty} ro(t) & 0.3820 \\ \end{array}$$

E.

臣

EXAMPLE 2

The lifetime of system follows PH distribution with representation $U_i \sim Ph(\alpha, a^i T)$, and same distribution for repair time $D_i \sim Ph(\beta, b^i \mathbf{S})$

Parameters	Value		
λ	0.02/h		
p	0.87		
α	[1 0 0]		
β	[1 0 0]		
a	1.25		
b	0.9		
N	3		

$$\boldsymbol{T} = \left(\begin{array}{cccc} -0.001 & 0.001 & 0\\ 0 & -0.08 & 0.08\\ 0 & 0 & -0.01 \end{array}\right), \quad \boldsymbol{S} = \left(\begin{array}{cccc} -0.5 & 0.5 & 0\\ 0.01 & -0.08 & 0.07\\ 0.005 & 0 & -0.2 \end{array}\right)$$

3

$\boldsymbol{m} = \begin{pmatrix} 48.8302 \\ 49.0574 \\ 48.6301 \\ \underline{48.0516} \\ 4.0817 \\ 4.5352 \end{pmatrix},$	m	30.1861		
	MTTF	48.8302		
	MTTR	0		
	MUT	731.2785		
		MDT	0.4177	
	\overline{A}	0.93866		
	5.0391		$\lim_{t \to \infty} ro(t)$	0.0139
			$t \rightarrow \alpha$	

E.

臣

6. Conclusions

- Extension of state space allows us to obtain reliability indicators in a standard way.
- Convolution algebra allows us to obtain closed form solution for reliability and non stationary indicators.
- Consideration of duration time of replacement in the future.
- Consideration of repairman replacement in the future.

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

[Pérez-Ocón et Torres-Castro (2002)] R. Pérez-Ocón and I. Torres-Castro, "A reliability semi-markov model involving geometric processes," *Applied Stochastic Models in Business* and Industry, vol. 18, no. 2, pp. 157–170, 2002.

[Ravichandran (2001)] N. Ravichandran, *Stochastic methods in reliability theory. John Wiley & Sons*, 1990.

[Limnios (2001)] N. Limnios and G. Oprisan, Semi-Markov processes and reliability. Springer Science & Business Media., 2001

[Lam (2007)] Y. Lam, The geometric process and its applications. World Scientific, 2007. [Yeh (1997)] L. Yeh, "The rate of occurrence of failures," *Journal* of Applied Probability, vol. 34, no. 1, pp. 234–247, 1997.

[Limnios (2012)] N. Limnios, "Reliability measures of semi-markov systems with general state space," *Methodology and Computing in Applied Probability*, vol. 14, no. 4, pp. 895–917, 2012.

[Limnios (2010)] N. Limnios, "Semi-markov processes and hidden models," Wiley Encyclopedia of Operations Research and Management Science, 2010.

[Ouhbi et Limnios (2002)] B. Ouhbi and N. Limnios, "The rate of occurrence of failures for semi-markov processes and estimation," *Statistics & probability letters*, vol. 59, no. 3, pp. 245–255, 2002.