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Hidden Markov Models : Uses and results

Example (HMM uses)

| Field of study | Uses |

Medicine Analyse epidemiologic surveillance data (Le Strat and Carrat 1999)
Reconstruct hidden or partially observed ecological dynamics (McClin-
tock et al. 2020)

Predict the regime of a monetary system thanks to the exchange rate
(Engel and Hamilton 1990)

Ecology

Finance

Results established for HMM :
m Model identifiability (Allman et al. 2009; Cappé et al. 2005)
m Asymptotic properties of the Maximum Likelihood Estimator (MLE, Cappé et al. 2005)
m Expectation-Maximization algorithm for HMM
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Hidden Markov Models : Limits

Example (Cases in which HMM is not sufficient)

m In the case of plants, due to the fact that the seeds produced by the grown plants enter
the soil each year an HMM is not sufficient (Pluntz et al. 2018; Le Coz et al. 2019).

m In finance, in an extension of the Hamilton's Markov-switching Model (Hamilton 1989)
the hidden regime depends on the observed financial data.

So, we propose the Observation-Driven HMM.

SO SO,
(20— (20—

(a) for an HMM. (b) for an OD-HMM.
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OD-HMM
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Model definition

We work on discrete time, with discrete and finite state spaces.
m initial probability :
m(z9) = P(Zy = z);
m emission probability :

R(zt,ye) = P(Y: = yi|Zt = z2);

m transition matrix :

Py

t—1

Specificity of OD-HMM
There are as many transition matrices as observed states.
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Generic identifiability

Generic identifiability for OD-HMM adapted from

The parameters of an OD-HMM with |Qz| hidden states and |Qy| observable states are
generically identifiable from the marginal distribution of 2L + 1 consecutive variables provided L

satisfies:
(L +1Qy[—1
1Qy| -1

where |Qz| is the size of the hidden state space and |Qy | is the size of the observed state space.

) > 2zllavl,

For Q7 = 2 and Qy = 2, the set of parameters 6 are identifiable as soon as the chain has more
than 2L + 1 = 7 observations.
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Maximum Likelihood Estimation
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Consistency of MLE

m OD-HMM is a particular case of Non Homogeneous Markov-Switching Auto-Regressive
models as defined in Ailliot and Pene (2015)

m We traduce their general results on consistency of the MLE for NHMS-AR

Sufficient conditions for OD-HMM

- The elements of P, and R are continuous in 6, for any y in Qy.
- Assumption satisfyed for finite state space and non-parametric case
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EM algorithm for HMM

EM algorithm for HMM

Iterative algorithm: each iteration is composed of two steps.
Expectation Step (E step): computation of the marginal distributions involved in the
expression of the intermediate quantity Q(8|0(™) = Eywm [InPg(Yo.nm, Zo:m)| Yo-m = Yo-m]-

Maximization step (M step): updating of the set of parameters 0 by resolving
O(m+1) = arg max Q(6|6(™).
0

For OD-HMM, the forward-backward equations of the E step must be adapted to take into
account the fact that the transition depends on the observations.
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Validation of the estimation procedure - Protocol

Protocol for the tests (repeated 50 times)

We simulated C independent chains (Z;) and (Y;) of length M = 500.

We used the EM algorithm for OD-HMM to obtain the parameters estimator 0 from the C
observed chains.

We quantified the difference between the true parameters 60* and the estimated ones 0 by
using the following distance :

. 1 &
dist(0F,0;) = = >

where K is the length of 6; and §; i is the k-th element of the 6 i-th row.
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Validation of the estimation procedure - Results

True parameters Average error for

ue p C = 100 chains
Test1 | px _ 0.2 0.8 pr _ 0.8 0.2 R* 0.8 0.2 0.068

0 08 02)''1 0.2 0.8/’ 0.2 0.8
Test 2 p# _ 0.6 04 p# _ 04 0.6 R* _ 0.2 0.8 0.126

0 04 06/)''1 06 0.4)° 0.8 0.2
Test 3 px _ 0.2 0.8 p# _ 0.8 0.2 R¥* _ 04 0.6 0.166

0 08 02)'1 0.2 0.8/’ 0.6 0.4

Conclusion :
m If the matrices are contrasted, or at least the emission matrix, estimation of the OD-HMM
is of good quality.
m Else, if the rows of the emission matrix are similar, we observe label switching
phenomenon and a degradation of the estimation quality.
m the R are always better estimated than the P.
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lllustration on simulated dynamics
of a real ecological system
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Model for annual plants dynamics inspired from Pluntz
et al. (2018)

Here, Z; is hidden seed bank, and Y; is standing flora.

Specificities

m The emission matrix is expressed as a function of
the germination, g ;

m The transition matrix depends on the seed survival,
s, and the seed production, d.
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Estimation of the average time of seeds stock persistence

Protocol for the estimation (repeated on 50 data set with the same 6*)

We simulated with the OD-HMM, C independent chains (Z;) and (Y;) of length M = 500.
We estimated an HMM and an OD-HMM on these data.

For both models, we estimated the average time of continuous presence of seeds in the
soil using simulated trajectories.

Results :
. 1st . 9th
Min. Decile Median | Mean Decile Max.
Empirical estimate 1 1 5 5973 6 12
from data
EM for OD-HMM 1 1 2 3.155 7 22
EM for HMM 1 2 9 12.166 27 113
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Conclusion
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Conclusion

Main results obtained for the OD-HMM :

¢ ¢ o o

Identifiability Consistency EM Algorithm Empirical validation ]

Perspectives

m Parametric OD-HMM: to be able to handle larger state spaces

m OD-HSMM: extension to the case where the hidden chain is a semi-Markov chain (Barbu
and Limnios 2008; Yu 2016), for more realism — how to integrate the impact of the
observation on the sojourn time?
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