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Model M = (A, r) where A = {1, . . . , 5}, r : A → P([0, 1]).

Consider a score, e.g. the mean, m : A → [0, 1]

Let m⋆ = max
a∈A

m(a) and O(M) = Argmax
a∈A

m(a).

At each decision time t, choose At ∈ A, receive Xt ∼ r(At).

After a while

Form the trajectory τt = (A1, X1, . . . , At , Xt), and counts Nt(a) =
∑t

t′=1 I{At′ = a}.
Try to guess e.g. the best distribution.
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Log-likelihood of model M = (A, r) versus M̃ = (A, r̃) on τT :

log M(τT )
M̃(τT )

=
T∑

t=1
log r(At)(Xt)

r̃(At)(Xt)
,

LT (M, M̃) = EM

[
log M(τT )

M̃(τT )

]
=

∑
a

EM

[
NT (a)

]
KL(r(a), r̃(a)) .

Game
B(a, M): For some a /∈ O(M), find M̃ = M̃a such that
▶ ∀a ∈ O(M), r(a) and r̃(a) undistinguishable
▶ a ∈ O(M̃)

Say O(M) = {5}, then r̃(5) = r(5), r̃(a) has mean m̃(a) > m(5).

Closest?

inf
M̃∈B(a,M)

LT (M, M̃) = EM

[
NT (a)

]
inf
r̃

{KL(r(a), r̃) : r̃ has mean > m⋆}

= EM
[
NT (a)

]
K(r(a), m⋆)
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How much does it cost to fool you and deviate from optimality?

Fooling cost The larger inf
M̃∈B(a,M)

L(M, M̃) the most difficult to make arm a look

optimal while it isn’t.
Lower bound We consider algorithms that are uniformly “good” on all M ∈ M. In
particular on M, and M̃a ∈ B(a, M) for each a.

Control achievable “performances”.
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Algorithm

Pick MLE M̂t , choose to sample At ∈ O(M̂t)
vs

Pick MLE M̂t , choose to “track” inf
M̃∈B(a,M̂t)

L(M̂t , M̃).

Ensure log(Nt(a)
t ) ≃ − inf

M̃∈B(a,M̂t)
L(M̂t , M̃) by choosing:

At ∈ argmin
a∈A

inf
M̃∈B(a,M̂t)

L(M̂t , M̃) + log(Nt(a)
t ) .

= argmin
a∈A

NT (a)K(̂rt(a), m̂⋆,t) + log(Nt(a)
t ) .

▷ Provably optimal strategy for “regret minimization”
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M = (S, A, p1, p, r)

S: set of states,
A = (As)s∈S : set of actions available in each state.
X = {(s, a) : s ∈ A, a ∈ As}: set of pairs.
p1 ∈ P(S): initial state distribution,
p : X → P(S): transition distribution function.
r : X → P(R): reward distribution function, with mean reward function m : X → R

In RL: p, r are unknown.
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Actions: { , , , }
Rewards: 1 when in goal state, 0 otherwise.
Transitions: “Frozen-lake”. Reset to random initial state after reaching goal (yellow)
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Actions: Colors
Transitions: Shaded arrows
Rewards: sparse.
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Agent

Environment

Action at
Transition

st+1 ∼ p(st , at)
Reward

rt+1 ∼ r(st , at)

Discrete time (no autonomous dynamic)

Goal: Maximize “cumulative return”.
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Each stationary policy π : S → P(A) acting in M induces a Markov chain on S.

(Policy mean) mπ(s) =
∑

a∈As
m(s, a)π(a|s)

(Policy transition) pπ(s ′|s) =
∑

a∈As
p(s ′|s, a)π(a|s)

For a sequence of policies π = (πt)t , its value up to time T is

Vπ,T (s1) = E
[ T∑

t=1
rt

]
=

T∑
t=1

( t−1∏
t′=1

pπt′ mπt

)
(s1) .
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Learning with episodes (of length H):
▷ Learner wants to find a policy with maximal value V⋆

H(s) = max
π

Vπ,H(s).
▷ At episode k, agent builds policy πk . We measure the gap to optimality:

∆(πk) = V⋆
H(s1) − Vπk ,H(s1)

▷ As k → ∞, we expect the gap to vanish, that is ∆(πk) → 0.

vs

Learning within one episode: (this talk!)
▷ Learner wants to get maximal reward and maximize its own value.
▷ At decision step T , we measure the regret of the agent choosing π = (πt)t ,
accumulated while learning, compared to an optimal policy ⋆ with

RT (π, M) = V⋆,T (s1) − Vπ,T (s1)

▷ As T → ∞, the regret cannot decreases, we still expect RT (π, M)/T → 0.
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We are interested in policies that maximize rewards in the long run,

lim
T

1
T Vπ,T (s1)

For stationary policy π, this is
(

lim
T

1
T

T∑
t=1

pt−1
π mπ

)
(s1), hence we define

(Average transition) pπ = lim
T→∞

1
T

T∑
t=1

pt−1
π ,

(Average frequency) fπ,s1(s, a) = pπ(s|s1)π(a|s)

The average value (aka gain) of a policy π starting in state s1:

gπ(s1) = (pπmπ)(s1) = ⟨fπ,s1 , mπ⟩.
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The average value (aka gain) of a policy π starting in state s0:

gπ(s1) = (pπmπ)(s1) = ⟨fπ,s1 , mπ⟩.

The bias function is given by bπ(s) =
( ∞∑

t=1
(pt−1

π − pπ)mπ

)
(s).

Fixed point property:

(Poisson equation) bπ(s) = mπ(s) − gπ(s) + (pπbπ)(s) .

(Span S(f ) = maxx f (x) − minx f (x) of function f : X → R. The span operator
induces a semi-norm on functions.)
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An MDP M is communicating if every pair of state is communicating under some
policy, that is

∀s, s ′ ∈ S, ∃π, ∃t <∞ : pt
π(s ′|s) > 0.

An MDP M is irreducible if every policy π on M induces an irreducible Markov
chain, that is

∀π, ∀s, s ′ ∈ S, ∃t <∞ : pt
π(s ′|s) > 0.

An MDP M is ergodic1 if every policy π on M induces an ergodic Markov chain,
that is ∀π,

(irreducibility) ∀s, s ′ ∈S, ∃t <∞, pt
π(s ′|s) > 0,

(aperiodicity) ∀s ∈S, GCD({t : pt
π(s|s) > 0}) = 1,

(positive recurrence) ∀s ∈S, E(min{t > 1 : st = s}|s1 = s])<∞ .

1In the MDP learning literature it is common to use “ergodic” terminology in lieu of “irreducible”.
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▷ Gain optimal policies:

O(M, s1) =
{

π : gπ(s1) ⩾ gπ′(s1)∀π′
}

,

▷ In a communicating MDP with finite S and A,
⋂

s1∈S
O(M, s1) ̸= ∅ and contains a

unichain policy.
▷ The cumulative regret up to time T ∈ N of an algorithm executing policy
π = (πt)t (that is, it plays policy πt at time t ∈ {1, . . . , T}) in MDP M starting
from initial state s1, against optimal policies for the different optimality criteria are
given by

RT ,s1(π; M) = V⋆,T (s1) − Vπ,T (s1) where ⋆ ∈ O(M, s1)
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The cumulative regret up to time T for the average gain and discounted criterion
satisfy the following decomposition provided that an optimal policy ⋆ is unichain,

RT ,s1(π; M) =
∑
x∈X

Eπ,s1 [NT (x)]∆(x) +
([ T∏

t′=1
pπt′ − pT

⋆

]
b⋆

)
(s1)︸ ︷︷ ︸

⩽S(b⋆)

,

where we introduced the sub-optimality gap

∆(s, a) = m⋆(s) − m(s, a) + ((p⋆ − pa)b⋆)(s).

Minimizing ∆(s, a) is equivalent to maximizing φM(s, a) = m(s, a) + (pab⋆)(s).

▷ In Bandits |S| = 1, ∆(a) = m⋆ − m(a) and

RT (π, M) =
∑
a∈A

Eπ[NT (a)]∆(a) .
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Regular model M

For each x ∈ X , r(x) ∈ Dx ⊂ P(R) where Dx is known to the learner, D = ⊗xDx .
Light-tail rewards For all x ∈ X , the moment generating function of reward r(x)
exists in a neighborhood of 0.
Semi-bounded rewards There exists a known quantity mmax(x)∈R such that
Supp(r(x)) ⊂ (−∞, mmax(x)] and m(x) < mmax(x).

Good learner

Definition (Uniformly Good strategies)
A agent is uniformly-good on D if

∀M = (ra)a∈A ∈ D, ∀a /∈ O(M), E[NT (a)] = o(T α) for all α ∈ (0, 1].
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Theorem (“Price for being uniformly-good”)
Any uniformly good strategy on D = BernA must satisfy (Lai & Robbins, 85)

∀a /∈ O(M) lim inf
T→∞

EM[NT (a)]
ln(T ) ⩾

1
kl(ma, m⋆) .

More generally (Burnetas & Katehakis, 96) for r ∈ ⊗a∈ADa

∀a /∈ O(M) lim inf
T→∞

E[Na(T )]
ln T ⩾

1
Ka(ra, m⋆) ,

Ka(ra, m⋆) = inf{KL(ra, r̃) : r̃ ∈ Da,Er̃ [X ] > m⋆}
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For any uniformly-good strategy π on M and M ∈ M,

lim inf
T→∞

RT (π, M)
ln T ⩾

∑
a∈A

∆a
Ka(ra, m⋆)

where

Ka(ra, m⋆) = inf{KL(ra, r̃) : r̃ ∈ Da,Er̃ [X ] > m⋆}

▷ IMED strategy πI is optimal in the sense that for each M ∈ M (with regular M)

lim sup
T→∞

RT (πI , M)
ln T ⩽

∑
a∈A

∆a
Ka(ra, m⋆)
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▷ For any test function h bounded in [0, 1],

EM

[
log M(τT )

M̃(τT )

]
⩾ kl

(
EM[h(τT )],EM̃[h(τT )]

)
,

where kl(x , y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).

▷ For h(τT ) = 1 − NT (a)/T , using uniformly-good assumption, we can show

EM

[
log M(τT )

M̃a(τT )

]
⩾ (1 − α) log(T ) + o(log(T )) for all α,

from which we get for each a /∈ O(M)

lim inf
T

EM

[
log M(τT )

M̃a(τT )

]
log(T ) ⩾ 1 i.e. lim inf

T

EM
[
NT (a)

]
log(T ) ⩾

1
K(r(a), m⋆) .
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For a given trajectory τT = (s1, a1, r1, s2, . . . , sT+1) and two MDPs
M = (S, A, p1, p, r), M̃ = (S, A, p̃1, p̃, r̃):

log M(τT )
M̃(τT )

= log p1(s1)
p̃1(s1) +

T∑
t=1

log p(st , at)(st+1)
p̃(st , at)(st+1) + log r(st , at)(rt)

r̃(st , at)(rt)

EM

[
log M(τT )

M̃(τT )

]
= KL(p1, p̃1) +

∑
x

EM

[
NT (x)

][
KL(p(x), p̃(x)) + KL(r(x), r̃(x))

]
.

▷ For a policy π generating τT from starting state s1 (i.e. p1 = p̃1 = δs1), we let

LT (M, M̃) =
∑

x
EM,π,s1

[
NT (x)

]
KLx (M, M̃) .

where KLx (M, M̃) = KL(p(x), p̃(x)) + KL(r(x), r̃(x)) .
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▷ Regret decomposition

RT ,s1(π; M) =
∑
x∈X

Eπ[NT (x)]∆(x) + constant

with ∆(s, a) = φM(s, ⋆(s)) − φM(s, a).
▷ Optimal policies

O(M, s1) =
{

π : gπ(s1) ⩾ gπ′(s1)∀π′
}

,

▷ For each π deviating from O(M, s1), find confusing M̃π that minimizes

LT (M, M̃) =
∑
x∈X

EM
[
NT (x)

]
KLx (M, M̃) .
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Uniformly good strategies An algorithm is said uniformly η-good on M, where
η : N → R+ that satisfies lim

t→∞
η(t) = 0 specifies a rate function, if for all T , for all

M ∈ M, for all x ∈ X such that ∆M(x) > 0, then

EM,π,s1 [NT (x)/T ] ⩽ η(T )] .

(e.g. η(T ) = O(T α−1))

Beneficial MDPs for policy π, are M̃ ∈ Bs1(π, M;M) such that
▶ ∀⋆ ∈ O(M), (r⋆, p⋆) and (̃r⋆, p̃⋆) are undistinguishable.
▶ ∀⋆ ∈ O(M), g̃π(s1) > g̃⋆(s1)

Note: So g̃⋆ = g⋆ and φM̃(s, ⋆(s)) = φM(s, ⋆(s)) = φ⋆
M(s)

Odalric-Ambrym Maillard Learning challenges in MDPs. June 07, 2023 24/42

Good strategies and beneficial MDPsGood strategies and beneficial MDPs



.

Uniformly good strategies An algorithm is said uniformly η-good on M, where
η : N → R+ that satisfies lim

t→∞
η(t) = 0 specifies a rate function, if for all T , for all

M ∈ M, for all x ∈ X such that ∆M(x) > 0, then

EM,π,s1 [NT (x)/T ] ⩽ η(T )] .

(e.g. η(T ) = O(T α−1))

Beneficial MDPs for policy π, are M̃ ∈ Bs1(π, M;M) such that
▶ ∀⋆ ∈ O(M), (r⋆, p⋆) and (̃r⋆, p̃⋆) are undistinguishable.
▶ ∀⋆ ∈ O(M), g̃π(s1) > g̃⋆(s1)

Note: So g̃⋆ = g⋆ and φM̃(s, ⋆(s)) = φM(s, ⋆(s)) = φ⋆
M(s)
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inf
M̃∈Bs1 (π,M)

∑
x∈X

EM
[
NT (x)

]
KLx (M, M̃)

▷ Perturbation of optimal policy For ⋆ ∈ O(M), consider π = ⋆s,a that plays
action a in state s and otherwise ⋆.
▷ In ergodic MDPs, all states are recurrent under each policy.

In particular X⋆∆X⋆s,a = {(s, a)}, where Xπ = {x : fπ,s1(x) > 0}.

▷ Also, since ⋆ and π only differ in (s, a), g̃⋆s,a(s1) > g̃⋆(s1) iff
φM̃(s, a) > φM̃(s, ⋆(s)) = φ⋆

M(s), that is m̃(s, a) + (p̃ab⋆)(s) > φ⋆
M(s).

Ergodic simplification
For each (s, a), the confusing cost becomes

EM
[
NT (s, a)

]
Ks,a

(
M, φ⋆

M(s)
)

where Kx
(
M, φ

)
= inf

{
KL(r(x), r̃(x)) + KL(p(x), p̃(x)) : φM̃(x) > φ

}
= inf

{
KL

(
r(x) ⊗ p(x), r̃ ⊗ p̃

)
: m̃ + q̃b⋆ > φ

}
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For all η-uniformly-good strategy with η(T ) = O(T α−1) for all α ∈ (0, 1),

lim inf
T

RT ,s1(π, M)
ln(T ) ⩾ inf

κ∈R|X |
+

{ ∑
x∈X

κx∆(x) : ∀(s, a),κs,aKs,a
(
M, φ⋆

M(s)
)
⩾1

}
,

⩾
∑

(s,a)∈X

∆(s, a)
Ks,a

(
M, φ⋆

M(s)
)
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Light-tail rewards For all x ∈ X , the moment generating function of reward r(x)
exists in a neighborhood of 0.
Semi-bounded rewards For all x ∈ X , r(x) belongs to a subset Fx ⊂ P(R) known
to the learner.
There exists a known quantity mmax(x)∈R such that Supp(r(x)) ⊂ (−∞, mmax(x))
and its mean satisfies m(x) < mmax(x).

Ergodicity The MDP is ergodic, ∀s, s ′, ∀π, ∃t ∈ N : pt
π(s ′|s) > 0.
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IMED-RL is a model-based algorithm that keeps empirical estimates of the
transitions p and rewards r.

While policy iteration constructs a sequence of policies that are increasingly better,
IMED-RL constructs a sequence of sub-MDPs of the original MDP that are
increasingly better with high probability.
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Empirical MDP r̂(s, a) and p̂t(s, a) the empirical reward and transition
distributions after t time steps, i.e. using Ns,a(t) samples from the distributions. M̂t
is the empirical MDP built from those estimations.

Skeleton The skeleton at time t, is defined by

As(t) = {a ∈ As : Ns,a(t) ⩾ log2( max
a′∈As

Ns,a′(t))}.

It is homogeneous in the sense that it does not depends explicitly on t nor Ns(t),
only Ns,a(t) and maxa′ Ns,a′(t).

Restricted MDP M̂|t = M̂t(A(t)) is the empirical MDP whose action space is
restricted to the skeleton.
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A value iteration scheme (or Policy iteration scheme) is applied to M̂|t , to find a
policy ⋆̂t .

▷ This enables to build estimate φM̂|t
of: φM(s, a) = m(s, a) + (pab⋆)(s).

Using ⋆̂t , m̂t , p̂t , b̂⋆̂t
.

▷ By ergodicity, the pairs in the skeleton have enough visits (≃ log2(t)), so
well-estimated.

▷ In ergodic MDPs, for each π /∈ O(M), there exists a policy improving over π at
Hamming distance 1 of π.
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The the IMED-RL index of (s, a) at time t, Hs,a(t), is defined as

Hs,a(t) = Nt(s, a)Ks,a
(
M̂|t , φ⋆

M̂|t
(s)

)
+ log Nt(s, a) ,

Ks,a
(
M, φ

)
= inf

{
KL

(
r(x) ⊗ p(x), r̃ ⊗ p̃

)
: m̃ + p̃b⋆ > φ

}
where φ⋆

M(s) = max
a∈As

φM(s, a) with φM(x) = m(s, a) + (pab⋆)(s).
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Algorithm 1 IMED-RL

Initialisation State s1
for t ⩾ 1 do

Compute the skeleton As(t) for each s and set M̂|t
Run value iteration on M̂|t to get φ⋆

M̂|t
.

Sample At ∈ arg min
a∈As

Nt(s, a)Ks,a
(
M̂|t , φ⋆

M̂|t
(s)

)
+ log Nt(s, a)

▷ Note: φ⋆

M̂|t
should be good estimate of φ⋆

M.
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Theorem (Asymptotic Optimality)

IMED-RL is asymptotically optimal, that is,

lim
T→+∞

RT ,s1(IMED-RL; M)
log T ⩽

∑
s,a∈X

∆s,a
(
M

)
Ks,a

(
M

) .

Odalric-Ambrym Maillard Learning challenges in MDPs. June 07, 2023 33/42

Asymptotic optimalityAsymptotic optimality



.

▶ Ergodic Environment
▶ Communicating Environment

From a communicating only MDP, by mixing its transition p with that obtained
from playing a uniform policy, formally

pε(·|s, a) = (1 − ε)p(·|s, a) + ε
∑

a′∈As

p(·|s, a′)/|As |,

for an arbitrarily small ε > 0 one obtain an ergodic MDP.
Experimentally, we take ε = 10−3.
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Algorithm 2 IMED-RL

Initialisation State s1
for t ⩾ 1 do

Compute the skeleton As(t) for each s and set M̂|t
Run value iteration on M̂|t to get φ⋆

M̂|t
.

Sample At ∈ arg min
a∈As

Nt(s, a)Ks,a
(
M̂|t , φ⋆

M̂|t
(s)

)
+ log Nt(s, a)

▷ Optimization problem Ks,a computed at each step: find an iterative approach
(reusing previous computation)?
▷ Compute Nt(s, a), Ks,a for continuous s, a: Introduce encoder for s, a, density
estimation, etc.
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Recurrent classes
▷ Perturbation of ⋆ at (s, a) may completely change the recurrent class: X⋆ vs X⋆s,a

▷ (s, a) may not be recurrent: find confusing instance by changing M at other pairs.

LT (M, M̃) =
∑

x∈X⋆s,a \X⋆

EM
[
NT (x)

]
KLx (M, M̃) .

▷ NO clear simplification in general.

Estimation
▷ Some states may not be visited frequently, even by an optimal policy
▷ Estimates of r(x), p(x) may not converge for such x /∈ X⋆!
▷ Study case with known support of p?
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▷ Finite time lower bound For any uniformly η-good strategy on M, and any
MDP M ∈ M, it holds for all T such that ηT ⩽ 1

2|X | ,

RT ,s1(π; M) ⩾ CT ,s1(M,M) ,

where we introduced

CT ,s1(M,M)= inf
n∈T ·P|X |

{ ∑
x∈X

nx∆(x)−S(b⋆) : ∀π, inf
M̃∈Bs1(π,M;M)

∑
x∈X

nxKLx (M, M̃)
kl

(
1−ηT |X |, ηT |X |

) ⩾1
}

,

▷ Asymptotic lower bound Furthemore, for ηT = O(T α−1) for all α ∈ (0, 1),
asymptotically, we get

lim inf
T

RT ,s1(π, M)
ln(T ) ⩾ inf

κ∈R|X |
+

{ ∑
x∈X

κx∆(x) : ∀π, inf
M̃∈Bs1 (π,M;M)

∑
x∈X

κxKLx (M, M̃)⩾1
}

,
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▷ Computing confusing MDP hence cost implies searching over all places where
MDP could be modified (|X⋆s,a \ X⋆|, possibly O(SA) pairs). Conjecture: cost is
exponential in |X⋆s,a \ X⋆|.

▷ In non-unichain MDPs, there may be no improving policies over π at Hamming
distance 1 of π.
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. “The more applied you go, the stronger theory you need”
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