Multichain hidden Markov and semi-Markov processes with applications

Jean-Baptiste Durand ${ }^{\dagger}$, Hanna Bacave ${ }^{\ddagger}$, Alain Franc ${ }^{\star}$,
Sandra Plancade ${ }^{\ddagger}$, Nathalie Peyrard ${ }^{\ddagger}$ and Régis Sabbadin ${ }^{\ddagger}$

Processus markoviens, semi-markoviens et leurs applications 5-7 juin 2023 - Montpellier

Project supported by ANR HSMM-INCA
\dagger Cirad, UMR AMAP, Montpellier \ddagger INRAE, Unité MIA, Toulouse,
\star INRAE UMR BioGeCo, Bordeaux

Multichain hidden Markov models (HMMs): motivation, definition and illustrations

Parameter estimation: impact of couplings on complexity

Perspectives et conclusions

Motivation for Multichain HMMs

- HMM: classical statistical model for analysis of discrete-time latent signals (ecology, medicine, natural hazards, video analysis, ...)
- In many applications: more than one hidden chain; interaction between chains
- metapopulation dynamics on a network of patches
- disease spread over a network of hosts
- earthquake activities in neighbour seismic areas
- Questions
- How to formalize the concept of 'Multichain' HMM?
- How is inference complexity impacted by additional chains?

An HMM is a directed graphical model

- Let us define
$Z_{0: T}=\left\{Z_{0}, \ldots, Z_{T}\right\}$: the sequence of hidden states
$Y_{0: T}=\left\{Y_{0}, \ldots, Y_{T}\right\}:$ the sequence of observed states
- Joint distribution

$$
\begin{aligned}
\mathbb{P}\left(Z_{0: T}=z_{0: T}, Y_{0: T}=y_{0: T}\right)= & \mathbb{P}\left(Z_{0}=z_{0}\right) \mathbb{P}\left(Y_{0}=y_{0} \mid Z_{0}=z_{0}\right) \ldots \\
& \times \prod_{t=1}^{T} \mathbb{P}\left(Z_{t}=z_{t} \mid Z_{t-1}=z_{t-1}\right) \mathbb{P}\left(Y_{t}=y_{t} \mid Z_{t}=z_{t}\right) .
\end{aligned}
$$

- Graphical representation of conditional independencies

Unformal definition of Multichain HMMs

- The set of variables at t separate those at $t-1$ and those at $t+1$
- The HMM graph is a subgraph of the whole graph for each c
- There may be other edges between chains joining variables at $t-1$ and t
- Remarks
- This definition does not imply that $\left(Z^{c}, Y^{c}\right)=\left(\left(Z_{t}^{c}\right)_{t},\left(Y_{t}^{c}\right)_{t}\right)$ is a HMM
- This definition includes Factorial HMM (FHMM, Ghahramani and Jordan, 1997) and Coupled HMM (CHMM, Brand et al., 1997; Wainwright and Jordan, 2008)

Proposed definition of Multichain HMMs

Now C couples of sequences $\left(Z^{c}, Y^{c}\right)=\left(\left(Z_{t}^{c}\right)_{t},\left(Y_{t}^{c}\right)_{t}\right)$ for $1 \leq c \leq C$,
and $\boldsymbol{Z}=\left(Z^{1}, \ldots, Z^{C}\right), \boldsymbol{Y}=\left(Y^{1}, \ldots, Y^{C}\right)$ and
$\boldsymbol{X}=\left(\left(Z^{1}, Y^{1}\right), \ldots,\left(Z^{C}, Y^{C}\right)\right)$.
Definition
We say that the distribution of $(\boldsymbol{Z}, \boldsymbol{Y})$ is a multichain HMM if
(i) the joint distribution of \boldsymbol{X} satisfies the Markov property,
(ii) in the graphical representation of the conditional independencies, there is an edge from Z_{t}^{c} towards Y_{t}^{c} and an edge from Z_{t}^{c} towards Z_{t+1}^{c},
(iii) there may exist other edges between variables at time t and variables at time $t+1$.

Typology of elementary couplings

Examples from the literature with applications

Structure (b) : Weeds Le Coz et al., 2019

where s is seed survival, g germination, c colonization and d seed production.

Others applications
(d) Recognition of human movements (Brand et al., 1997)
(d) Coupled HMMs: spread of infection (Touloupou et al., 2020)

Parametrization

- Factorization property associated with conditional independence graph

$$
p(z, \boldsymbol{y})=\prod_{c}\left[p\left(z_{0}^{c}\right) p\left(y_{0}^{c} \mid z_{0}^{c}\right)\right] \prod_{t>0} \prod_{c}\left[p\left(y_{t}^{c} \mid \mathrm{pa}\left(y_{t}^{c}\right)\right) p\left(z_{t}^{c} \mid \mathrm{pa}\left(z_{t}^{c}\right)\right)\right.
$$

where $\mathrm{pa}(x)$ refers to the parents of x.

- Induces a canonical parametrization for $p(\boldsymbol{Z}, \boldsymbol{Y})$ in the case of discrete observed variables.
- Can be extended to continuous observed variables using regression models.
- Focusing on discrete variables for the sake of concision, does not change computational complexity of marginalization.

Example of full coupling states/observations:

$$
\begin{aligned}
& \mathbb{P}\left(Z_{t}^{c}=j \mid Z_{t-1}^{c}=i, \boldsymbol{Z}_{t-1}^{-c}=\boldsymbol{\nu}, \boldsymbol{Y}_{t-1}=\boldsymbol{y}_{t-1}\right)=a_{i, \boldsymbol{\nu}, \boldsymbol{y}_{t-1}, j} \\
& \mathbb{P}\left(Y_{t}^{c}=y \mid Z_{t}^{c}=j, \boldsymbol{Z}_{t-1}=\boldsymbol{i}, \boldsymbol{Y}_{t-1}=\boldsymbol{y}_{t-1}\right)=p_{\theta_{i, j, \boldsymbol{y}_{t-1}}}(y)
\end{aligned}
$$

Impact of couplings on complexity: EM algorithm in Multichain HMMs

Example of full coupling

The EM algorithm consists in iterated maximizations (in λ) of the function:

$$
\begin{aligned}
& Q\left(\lambda, \lambda^{(m)}\right)=E_{\lambda(m)}\left[\log p_{\lambda}(\boldsymbol{Z}, \boldsymbol{y}) \mid \boldsymbol{y}\right]=\sum_{c} \sum_{j} \mathbb{P}_{\lambda^{(m)}}\left(Z_{0}^{c}=j \mid \boldsymbol{y}\right) \log \pi_{j} \\
& +\sum_{c} \sum_{j} \mathbb{P}_{\lambda^{(m)}}\left(Z_{0}^{c}=j \mid \boldsymbol{y}\right) \log p_{\theta_{j}}\left(y_{0}^{c}\right) \\
& +\sum_{t=1}^{T} \sum_{c} \sum_{i} \sum_{\nu} \mathbb{P}_{\lambda^{(m)}}\left(Z_{t-1}^{c}=i, \boldsymbol{Z}_{t-1}^{-c}=\boldsymbol{\nu}, Z_{t}^{c}=j \mid \boldsymbol{y}\right) \log a_{i, \nu, \boldsymbol{y}_{t-1}, j} \\
& +\sum_{t=0}^{T} \sum_{c} \sum_{i} \sum_{j} \mathbb{P}_{\lambda^{(m)}}\left(Z_{t}^{c}=j, \boldsymbol{Z}_{t-1}=\boldsymbol{i} \mid \boldsymbol{y}\right) \log p_{\theta_{i, j, y_{t-1}}}\left(y_{t}^{c}\right) .
\end{aligned}
$$

\Rightarrow This requires to compute marginal probabilities $\mathbb{P}_{\lambda^{(m)}}\left(Z_{0}^{c}=j \mid \boldsymbol{y}\right)$

Computational complexity, what is at stake?

Assuming common state space in multichain with domain size K

- Marginal probabilities $\mathbb{P}_{\lambda^{(m)}}\left(Z_{0}^{c}=j \mid \boldsymbol{y}\right)$ can be computed in HMMs by the Forward-Backward algorithm (prevents time complexity $\mathcal{O}\left(K^{T}\right)$)
- In classical monochain HMMs, this can be done in time $\mathcal{O}\left(T K^{2}\right)$
- In multichain HMMs, a naive application of Forward-Backward to the collapsed process (with a single multivariate state of domain size K^{C}) leads to complexity $\mathcal{O}\left(T K^{2 C}\right)$.

Thus, inference (and EM) is infeasible in this way when the number of hidden chains increases (event moderate C!)
\Rightarrow Are there cases where this curse of dimentionality can be broken?
\Rightarrow And when it cannot, are there efficiently computable approximations?

Reduced complexity due to conditional independence

Hidden variables from different chains may be independent given all observations \boldsymbol{Y}, when arcs linking nodes from different chains depart from observed variables only:

\Rightarrow In this case, separate inference/EM algorithms can be applied to the chains, leading to overall complexity $\mathcal{O}\left(C T K^{2}\right)$.

Moralization graphs of the four types

Reduced complexity due to sparse transition matrices

- Forward/backward algorithm with C chains can be rewritten as a series of T matrix \times vector products, with transition matrix $K^{C} \times K^{C}$, times vector of dimension K^{C}.
- Each product requires $K^{2 C}$ multiplications (why: as many multiplications as terms in the matrix), hence the global complexity in $\mathcal{O}\left(T K^{2 C}\right)$.
- The complexity of the matrix \times vector product can be significantly decreased if the matrix is sparse: if the density of the matrix is in $K^{\rho C}$ with $\rho<2$, the complexity is in $\mathcal{O}\left(T K^{\rho C}\right)$.
- If $\rho<1$, the graph of coupling is no longer connected, and there exists sets of independent chains (the number of edges is lower than K^{C}, the number of states); we give next an example of a model of metapopulation with $\rho=1$.

Example of sparsity: a metapopulation model

- Metapopulation: C patches, each patch is a chain with $K=2$ states: occupied $(z=1)$ or empty $(z=0)$.
- at time t, transitions occur in one patch and one patch only selected randomly: colonisation if empty $(0 \rightarrow 1)$ or extinction if occupied $(1 \rightarrow 0)$.
- a simple example: $C=3$, states $\mathbf{i}, \mathbf{j} \in\{0,1\}^{3}$; transition matrix with \times if $A[\mathbf{i}, \mathbf{j}] \neq 0$ and with "." if $A[\mathbf{i}, \mathbf{j}]=0$; for example, $010 \rightarrow 011$ is a colonisation and $111 \rightarrow 000$ is impossible (3 events).

$\mathbf{i} \backslash \mathbf{j}$	000	001	010	111	100	101	110	111
000	\times	\times	\times	\cdot	\times	\cdot	\cdot	\cdot
001	\times	\times	\cdot	\times	\cdot	\times	\cdot	\cdot
010	\times	\cdot	\times	\times	\cdot	\cdot	\times	\cdot
011	\cdot	\times	\times	\times	\cdot	\cdot	\cdot	\times
100	\times	\cdot	\cdot	\cdot	\times	\times	\times	\cdot
101	\cdot	\times	\cdot	\cdot	\times	\times	\cdot	\times
110	\cdot	\cdot	\times	\cdot	\times	\cdot	\times	\times
111	\cdot	\cdot	\cdot	\times	\cdot	\times	\times	\times

One can show there are $\approx K^{C}$ non zero elements if $C \gg 1$.

Current work on multichain (hidden) semi-Markov processes and perspectives

- Core of the problem: changing sojourn duration underway.
- Current approaches restrict interactions at transition times Example of Touloupou et al. (2020), but ill-defined.
- Possibilities through discrete hazard rates $\lambda(d)=\mathbb{P}(D=d \mid D \geq d)$ $(=p$ in geometric $\mathcal{G}(p))$.
- Firstly, introduce covariates $\lambda(d \mid x)$
- Secondly, introduce states as covariates $\lambda_{c}\left(d \mid \boldsymbol{Z}_{t-1}^{-c}\right)$ while guaranteeing finite D.

Example of redefinition of coupled SMMs introduced by Touloupou et al. (2020) using residual duration R_{t}; possible alternatives with elapsed times E_{t}.

Concluding remarks

- Multichain $\mathrm{H}(\mathrm{S}) \mathrm{MMs}$: versatile framework for modelling various temporal processes on networks.
- Current and future work: catalogue of toolboxes, defining and learning couplings.
- Addressing computational complexity with approximate EM steps (variational EM, mean field) or Bayesian estimation.

References I

R Brand, M., Oliver, N., \& Pentland, A. (1997). Coupled hidden Markov models for complex action recognition. Computer Vision and Pattern Recognition, 994-999.
Eros, M.-J., Aubertot, J.-N., Peyrard, N., \& Sabbadin, R. (2017). GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease. PLOS One, 12(10), e0186014.

- Ghahramani, Z., \& Jordan, M. (1997). Factorial hidden Markov models. Machine Learning, 29(2-3), 245-273.
目 Le Coz, S., Cheptou, P.-O., \& Peyrard, N. (2019). A spatial Markovian framework for estimating regional and local dynamics of annual plants with dormancy. Theoretical Population Biology.
國 Touloupou, P., Finkenstädt, B., \& Spencer, S. E. F. (2020). Scalable bayesian inference for coupled hidden markov and semi-markov models. Journal of Computational and Graphical Statistics, 29(2), 238-249.

References II

國 Wainwright, M., \& Jordan, M. (2008). Graphical models, exponential families, and variational inference. In Foundations and trends in machine learning (pp. 1-305).

Examples of applications on slide 8

(c) Phoma propagation; pathogenic fungi (Cros et al., 2017) is actually a MDP on a graph, with coupling of type (d)
(d) Coupled HMMs: spread of infection (Touloupou et al., 2020) is a true multichain HMM with coupling of type (d)

