
Multichain hidden Markov and semi-Markov
processes with applications

Jean-Baptiste Durand†, Hanna Bacave‡, Alain Franc⋆,

Sandra Plancade‡, Nathalie Peyrard‡ and Régis Sabbadin‡

Processus markoviens, semi-markoviens et leurs applications
5-7 juin 2023 - Montpellier

Project supported by ANR HSMM-INCA

† Cirad, UMR AMAP, Montpellier ‡ INRAE, Unité MIA, Toulouse,
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Multichain hidden Markov models (HMMs): motivation, definition and
illustrations

Parameter estimation: impact of couplings on complexity

Perspectives et conclusions
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Motivation for Multichain HMMs

▶ HMM: classical statistical model for analysis of discrete-time latent
signals (ecology, medicine, natural hazards, video analysis, ...)

▶ In many applications: more than one hidden chain; interaction
between chains

- metapopulation dynamics on a network of patches

- disease spread over a network of hosts

- earthquake activities in neighbour seismic areas

▶ Questions

- How to formalize the concept of ’Multichain’ HMM?

- How is inference complexity impacted by additional chains?
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An HMM is a directed graphical model

▶ Let us define
Z0:T = {Z0, . . . ,ZT}: the sequence of hidden states
Y0:T = {Y0, . . . ,YT}: the sequence of observed states

▶ Joint distribution

P(Z0:T = z0:T ,Y0:T = y0:T ) = P(Z0 = z0)P(Y0 = y0 | Z0 = z0)...

×
T∏
t=1

P(Zt = zt |Zt−1 = zt−1)P(Yt = yt |Zt = zt).

▶ Graphical representation of conditional independencies

◦ ◦ ◦ ◦

• • • •

t = 0 t = 1 t = 2 t = 3

Zt

Yt
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Unformal definition of Multichain HMMs

◦ ◦ ◦

◦

◦
• • •

•

◦ ◦

• •

c = 1 c = 2 c = 3

t − 1

t

t + 1◦ ◦

▶ The set of variables at t
separate those at t − 1
and those at t + 1

▶ The HMM graph is a
subgraph of the whole
graph for each c

▶ There may be other edges
between chains joining
variables at t − 1 and t

• Remarks
- This definition does not imply that (Z c ,Y c) = ((Z c

t )t , (Y
c
t )t) is a

HMM
- This definition includes Factorial HMM (FHMM, Ghahramani and
Jordan, 1997) and Coupled HMM (CHMM, Brand et al., 1997;
Wainwright and Jordan, 2008)
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Proposed definition of Multichain HMMs

Now C couples of sequences (Z c ,Y c) = ((Z c
t )t , (Y

c
t )t) for 1 ≤ c ≤ C ,

and Z = (Z 1, . . . ,ZC ), Y = (Y 1, . . . ,Y C ) and
X = ((Z 1,Y 1), . . . , (ZC ,Y C )).

Definition
We say that the distribution of (Z ,Y ) is a multichain HMM if
(i) the joint distribution of X satisfies the Markov property,
(ii) in the graphical representation of the conditional independencies,

there is an edge from Z c
t towards Y c

t and an edge from Z c
t towards

Z c
t+1,

(iii) there may exist other edges between variables at time t and
variables at time t + 1.
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Typology of elementary couplings

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(a)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(b)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(c)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(d)
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Examples from the literature with applications

Structure (b) : Weeds Le Coz et al., 2019

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2

g g

g g

s s

d dc

where s is seed survival, g germination, c colonization and d seed production.

Others applications
(d) Recognition of human movements (Brand et al., 1997)
(d) Coupled HMMs: spread of infection (Touloupou et al., 2020)
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Parametrization
▶ Factorization property associated with conditional independence

graph

p(z , y) =
∏
c

[p(zc0 )p(y
c
0 |zc0 )]

∏
t>0

∏
c

[p(y c
t |pa(y c

t ))p(z
c
t |pa(zct ))

where pa(x) refers to the parents of x .

▶ Induces a canonical parametrization for p(Z ,Y ) in the case of
discrete observed variables.

▶ Can be extended to continuous observed variables using regression
models.

▶ Focusing on discrete variables for the sake of concision, does not
change computational complexity of marginalization.

Example of full coupling states/observations:

P(Z c
t = j |Z c

t−1 = i ,Z−c
t−1 = ν,Yt−1 = yt−1) = ai,ν,yt−1,j ;

P(Y c
t = y |Z c

t = j ,Zt−1 = i ,Yt−1 = yt−1) = pθi,j,yt−1
(y).
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Impact of couplings on complexity: EM algorithm in
Multichain HMMs
Example of full coupling

The EM algorithm consists in iterated maximizations (in λ) of the
function:

Q(λ, λ(m)) = Eλ(m) [log pλ(Z , y)|y ] =
∑
c

∑
j

Pλ(m)(Z c
0 = j |y) log πj

+
∑
c

∑
j

Pλ(m)(Z c
0 = j |y) log pθj (y c

0 )

+
T∑
t=1

∑
c

∑
i

∑
ν

Pλ(m)(Z c
t−1 = i ,Z−c

t−1 = ν,Z c
t = j |y) log ai,ν,yt−1,j

+
T∑
t=0

∑
c

∑
i

∑
j

Pλ(m)(Z c
t = j ,Zt−1 = i |y) log pθi,j,yt−1

(y c
t ).

⇒ This requires to compute marginal probabilities Pλ(m)(Z c
0 = j |y)
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Computational complexity, what is at stake?
Assuming common state space in multichain with domain size K

▶ Marginal probabilities Pλ(m)(Z c
0 = j |y) can be computed in HMMs by

the Forward-Backward algorithm (prevents time complexity O(KT ))

▶ In classical monochain HMMs, this can be done in time O(TK 2)

▶ In multichain HMMs, a naive application of Forward-Backward to
the collapsed process (with a single multivariate state of domain
size KC ) leads to complexity O(TK 2C ).

Thus, inference (and EM) is infeasible in this way when the number of
hidden chains increases (event moderate C !)

⇒ Are there cases where this curse of dimentionality can be
broken?

⇒ And when it cannot, are there efficiently computable
approximations?
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Reduced complexity due to conditional independence

Hidden variables from different chains may be independent given all
observations Y , when arcs linking nodes from different chains depart
from observed variables only:

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(a)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(b)

⇒ In this case, separate inference/EM algorithms can be applied to the
chains, leading to overall complexity O(CTK 2).
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Moralization graphs of the four types

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(a)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(b)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(c)

◦ ◦

• •
◦ ◦

• •

c = 1 c = 2
(d)

13 / 20



Reduced complexity due to sparse transition matrices

▶ Forward/backward algorithm with C chains can be rewritten as a
series of T matrix × vector products, with transition matrix
KC × KC , times vector of dimension KC .

▶ Each product requires K 2C multiplications (why: as many
multiplications as terms in the matrix), hence the global complexity
in O(T K 2C ).

▶ The complexity of the matrix × vector product can be significantly
decreased if the matrix is sparse: if the density of the matrix is in
KρC with ρ < 2, the complexity is in O(T KρC ).

▶ If ρ < 1, the graph of coupling is no longer connected, and there
exists sets of independent chains (the number of edges is lower than
KC , the number of states); we give next an example of a model of
metapopulation with ρ = 1.
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Example of sparsity: a metapopulation model
▶ Metapopulation: C patches, each patch is a chain with K = 2

states: occupied (z = 1) or empty (z = 0).

▶ at time t, transitions occur in one patch and one patch only selected
randomly: colonisation if empty (0 → 1) or extinction if occupied
(1 → 0).

▶ a simple example: C = 3, states i, j ∈ {0, 1}3; transition matrix with
× if A[i, j] ̸= 0 and with ”.” if A[i, j] = 0; for example, 010 → 011 is
a colonisation and 111 → 000 is impossible (3 events).

i\j 000 001 010 111 100 101 110 111
000 × × × . × . . .
001 × × . × . × . .
010 × . × × . . × .
011 . × × × . . . ×
100 × . . . × × × .
101 . × . . × × . ×
110 . . × . × . × ×
111 . . . × . × × ×

One can show there are ≈ KC non zero elements if C ≫ 1.
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Current work on multichain (hidden) semi-Markov
processes and perspectives

▶ Core of the problem: changing sojourn duration underway.

▶ Current approaches restrict interactions at transition times
Example of Touloupou et al. (2020), but ill-defined.

▶ Possibilities through discrete hazard rates λ(d) = P(D = d |D ≥ d)
(= p in geometric G(p)).

▶ Firstly, introduce covariates λ(d |x)

▶ Secondly, introduce states as covariates λc(d |Z−c
t−1) while

guaranteeing finite D.

Z1
t-1

R1
t-1

Z1
t

R1
t

Z2
t-1

R2
t-1

Z2
t

R2
t

Example of redefinition of coupled SMMs
introduced by Touloupou et al. (2020) using
residual duration Rt ; possible alternatives with
elapsed times Et .
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Concluding remarks

▶ Multichain H(S)MMs: versatile framework for modelling various
temporal processes on networks.

▶ Current and future work: catalogue of toolboxes, defining and
learning couplings.

▶ Addressing computational complexity with approximate EM steps
(variational EM, mean field) or Bayesian estimation.

17 / 20



References I

Brand, M., Oliver, N., & Pentland, A. (1997). Coupled hidden Markov
models for complex action recognition. Computer Vision and
Pattern Recognition, 994–999.

Cros, M.-J., Aubertot, J.-N., Peyrard, N., & Sabbadin, R. (2017).
GMDPtoolbox: A Matlab library for designing spatial
management policies. Application to the long-term collective
management of an airborne disease. PLOS One, 12(10),
e0186014.

Ghahramani, Z., & Jordan, M. (1997). Factorial hidden Markov models.
Machine Learning, 29(2-3), 245–273.

Le Coz, S., Cheptou, P.-O., & Peyrard, N. (2019). A spatial Markovian
framework for estimating regional and local dynamics of annual
plants with dormancy. Theoretical Population Biology.
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Examples of applications on slide 8

(c) Phoma propagation; pathogenic fungi (Cros et al., 2017) is actually
a MDP on a graph, with coupling of type (d)

(d) Coupled HMMs: spread of infection (Touloupou et al., 2020) is a
true multichain HMM with coupling of type (d)
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