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Multichain hidden Markov models (HMMs): motivation, definition and
illustrations

Parameter estimation: impact of couplings on complexity

Perspectives et conclusions
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Motivation for Multichain HMMs

» HMM: classical statistical model for analysis of discrete-time latent
signals (ecology, medicine, natural hazards, video analysis, ...)

» In many applications: more than one hidden chain; interaction
between chains

- metapopulation dynamics on a network of patches
- disease spread over a network of hosts
- earthquake activities in neighbour seismic areas
» Questions
- How to formalize the concept of 'Multichain” HMM?

- How is inference complexity impacted by additional chains?
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An HMM is a directed graphical model

> Let us define
Zo.t ={Z,...,Z71}: the sequence of hidden states
Yo.r = {Yo,..., Y7}: the sequence of observed states

» Joint distribution

P(Zo.T1 = z0.7, Yo.T = Yo.1) = P(Zo = 20)P(Yo=y0| 20 = 20)...
T

X HP(Z{ = Zt|Zt71 = thl)]P(Yt = yt|Zt = Zt).

t=1
» Graphical representation of conditional independencies

Y;: ° °
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Unformal definition of Multichain HMMs

» The set of variables at t
. /. /. / separate those at t — 1
+15 5 o and those at t + 1

e T/. T/ » The HMM graph is a

: to ° o subgraph of the whole
T/ T/ T/ graph for each ¢
t—b o o > There may be other edges
€= ﬁ: 2 =13 between chains joining

variables at t — 1 and t

o Remarks

- This definition does not imply that (Z¢, Y¢) = ((Z5)e, (YS)e) is a
HMM

- This definition includes Factorial HMM (FHMM, Ghahramani and
Jordan, 1997) and Coupled HMM (CHMM, Brand et al., 1997;
Wainwright and Jordan, 2008)
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Proposed definition of Multichain HMMs

Now C couples of sequences (Z¢, Y) = ((Z8)t, (Y{):) for 1 < c < C,
and Z =(Z%,...,Z°), Y =(Y',...,Y%) and
X=(Z,Y"Y,....(Z5,Y9)).

Definition

We say that the distribution of (Z,Y) is a multichain HMM if

(i) the joint distribution of X satisfies the Markov property,

(ii) in the graphical representation of the conditional independencies,
there is an edge from Z{ towards Y and an edge from Zf towards
Zi

(iii) there may exist other edges between variables at time t and
variables at time t + 1.
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Typology of elementary couplings

|

I/ I/ T/ %
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Examples from the literature with applications

Structure (b) : Weeds Le Coz et al., 2019

where s is seed survival, g germination, ¢ colonization and d seed production
Others applications

(d) Recognition of human movements (Brand et al., 1997)
(d) Coupled HMMs: spread of infection (Touloupou et al., 2020)
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Parametrization
» Factorization property associated with conditional independence
graph

p(z.y) = H[p(Zo 1z T T [le(ve Ipalys))p(zf Ipa(z))

t>0 ¢

where pa(x) refers to the parents of x.

» Induces a canonical parametrization for p(Z, Y) in the case of
discrete observed variables.

» Can be extended to continuous observed variables using regression
models.

» Focusing on discrete variables for the sake of concision, does not
change computational complexity of marginalization.

Example of full coupling states/observations:

P(Zi =jlZia =12 =V, Y1 = Yt-1) = Aiw,y i
(th = y‘Zt :Jazt—l = ’7 Yt—l = yt—l) = Gi)j‘ytil(y)'
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Impact of couplings on complexity: EM algorithm in
Multichain HMMs

Example of full coupling

The EM algorithm consists in iterated maximizations (in A) of the
function:

QA A™) = Eyim [log pA(Z, y)ly] = ZZPA /(25 = jly) logm;

+ZZIP’>\ (Z5 = jly) log po;(¥5)

+ZZZZPW(Z§_1 =i,Z 9 =v,Z{ =jly)logaivy .
+ZZZZPAm) Z =j,Zi 1_’|y)|0gp9un 1( fc)

t=0 c i

= This requires to compute marginal probabilities Py (Z§ = jly)
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Computational complexity, what is at stake?

Assuming common state space in multichain with domain size K

» Marginal probabilities Py (Z§ = j|y) can be computed in HMMs by
the Forward-Backward algorithm (prevents time complexity O(KT))

» In classical monochain HMMs, this can be done in time O( TK?)

» In multichain HMMs, a naive application of Forward-Backward to
the collapsed process (with a single multivariate state of domain
size K€) leads to complexity O( TK?¢).

Thus, inference (and EM) is infeasible in this way when the number of
hidden chains increases (event moderate C!)

= Are there cases where this curse of dimentionality can be
broken?

= And when it cannot, are there efficiently computable
approximations?
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Reduced complexity due to conditional independence

Hidden variables from different chains may be independent given all
observations Y, when arcs linking nodes from different chains depart
from observed variables only:

(a) (b)

= In this case, separate inference/EM algorithms can be applied to the
chains, leading to overall complexity O(CTK?).
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Moralization graphs of the four types
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Reduced complexity due to sparse transition matrices

» Forward/backward algorithm with C chains can be rewritten as a
series of T matrix X vector products, with transition matrix
K€ x K€, times vector of dimension K€.

» Each product requires K2¢ multiplications (why: as many
multiplications as terms in the matrix), hence the global complexity
in O(T K2°).

» The complexity of the matrix x vector product can be significantly
decreased if the matrix is sparse: if the density of the matrix is in
K€ with p < 2, the complexity is in O(T K*¢).

» If p < 1, the graph of coupling is no longer connected, and there
exists sets of independent chains (the number of edges is lower than
K€, the number of states); we give next an example of a model of
metapopulation with p = 1.
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Example of sparsity: a metapopulation model

» Metapopulation: C patches, each patch is a chain with K =2
states: occupied (z = 1) or empty (z = 0).

> at time t, transitions occur in one patch and one patch only selected
randomly: colonisation if empty (0 — 1) or extinction if occupied
(1—0).

» a simple example: C = 3, states i,j € {0,1}3; transition matrix with
x if Ali,j] # 0 and with "." if A[i,j] = 0; for example, 010 — 011 is
a colonisation and 111 — 000 is impossible (3 events).

i\j | 000 001 010 111 | 100 101 110 111
000 X X X . X

001 X X . X . X

010 X . X X X .

011 i X X X : . . X

100 X . . . X X X

101 . X . . X X . X

110 . . X . X : X X

111 ) . . X ) X X X

One can show there are =~ K€ non zero elements if C >'1.
15/20



Current work on multichain (hidden) semi-Markov
processes and perspectives

» Core of the problem: changing sojourn duration underway.

» Current approaches restrict interactions at transition times
Example of Touloupou et al. (2020), but ill-defined.

> Possibilities through discrete hazard rates A(d) = P(D = d|D > d)
(= p in geometric G(p)).

> Firstly, introduce covariates A(d|x)

» Secondly, introduce states as covariates Ac(d|Z,_9) while
guaranteeing finite D.

Example of redefinition of coupled SMMs
introduced by Touloupou et al. (2020) using
residual duration R;; possible alternatives with
elapsed times E;.
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Concluding remarks

» Multichain H(S)MMs: versatile framework for modelling various
temporal processes on networks.

» Current and future work: catalogue of toolboxes, defining and
learning couplings.

» Addressing computational complexity with approximate EM steps
(variational EM, mean field) or Bayesian estimation.
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Examples of applications on slide 8

(c) Phoma propagation; pathogenic fungi (Cros et al., 2017) is actually
a MDP on a graph, with coupling of type (d)

(d) Coupled HMMs: spread of infection (Touloupou et al., 2020) is a
true multichain HMM with coupling of type (d)
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