Impact of some model misspecification in multi-response HSMM - application to fruit tree.

Sarah Assaf† - Jean-Baptiste Durand‡ - Sandra Plancade†

Processus markoviens, semi-markoviens et leurs applications
5-7 juin 2023 - Montpellier

Project supported by ANR HSMM-INCA

† INRAE, Unité MIA, Toulouse, ‡ Cirad, UMR AMAP, Montpellier
Outline of presentation

Biological model, motivation and problem statement

Illustration of errors of interpretation in case of model misspecification

Model selection by BIC
Biological model of apple tree flowering

- Nodes on trunk \Leftrightarrow discrete index process

Observed variables (categorical)
- type of lateral branch
- terminal flowering

Mathematical model: multi-response HSMM (mHSMM)

Question: effect of cultivar (among 2) on growth phase lengths and/or compositions in terms of observations.

Approximate inference

Inference of mHSMM parameters regardless of cultivar (several trajectories)

Restoration of hidden chains (Viterbi)

Estimation of emission and state duration distributions: empirical distribution given restored hidden states (counts)
Biological model of apple tree flowering

- Nodes on trunk ↔ discrete index process
- Biological assumption: phases of growth that impact simultaneously all observed variables

Observed variables (categorical)
- type of lateral branch
- terminal flowering

Mathematical model: multi-response HSMM (mHSMM) with hidden states = growth phases, observations = categorical variables

Question: effect of cultivar (among 2) on growth phase lengths and/or compositions in terms of observations.

Approximate inference:
- Inference of mHSMM parameters regardless of cultivar (several trajectories)
- Restoration of hidden chains (Viterbi)
- Estimation of emission and state duration distributions: empirical distribution given restored hidden states (counts)
Biological model of apple tree flowering

- Observed variables (categorical)
 - type of lateral branch
 - terminal flowering

- Nodes on trunk ↔ discrete index process

- Biological assumption: phases of growth that impact simultaneously all observed variables

- Mathematical model: multi-response HSMM (mHSMM) with
 - hidden states = growth phases
 - observations = categorical variables

- Question: effect of cultivar (among 2) on growth phase lengths and/or compositions in terms of observations.
Biological model of apple tree flowering

- Nodes on trunk \(\Leftrightarrow\) discrete index process
- Biological assumption: phases of growth that impact simultaneously all observed variables
- Mathematical model: multi-response HSMM (mHSMM) with
 - hidden states = growth phases
 - observations = categorical variables
- Question: effect of cultivar (among 2) on growth phase lengths and/or compositions in terms of observations.
- Approximate inference
 - Inference of mHSMM parameters regardless of cultivar (several trajectories)
 - Restoration of hidden chains (Viterbi)
 - Estimation of emission and state duration distributions: empirical distribution given restored hidden states (counts)
Data analysis based on the mHSMM model

Conclusion

- Cultivar effect on hidden chains (state durations)
- Cultivar effect on "terminal flowering"
- Cultivar effect on "shoot type"

Contradiction with observations on raw data

- Consistency between observations and parameters on "terminal flowering"
- Contradiction on "shoot type"
 - No cultivar effect on observed variable.
 - Cultivar effect on emission from parameter estimates.
Contradiction with observations on raw data

- Consistency between observations and parameters on "terminal flowering"
- Contradiction on "shoot type"
 - No cultivar effect on observed variable.
 - Cultivar effect on emission from parameter estimates.
- Heuristical justification
 - Variable "terminal flowering" different between cultivars \(\Rightarrow\) generate different semi-Markov chains.
Contradiction with observations on raw data

▶ Consistency between observations and parameters on "terminal flowering"

▶ Contradiction on "shoot type"
 ▶ No cultivar effect on observed variable.
 ▶ Cultivar effect on emission from parameter estimates.

▶ Heuristical justification
 ▶ Variable "terminal flowering" different between cultivars ⇒ generate different semi-Markov chains.
 ▶ Different semi-Markov chains ⇒ Different time frame for a given state ⇒ Difference in variable distribution given state
Two potential classes of models

State $S_{i,t}$, observation $O_{i,t}^{(c)}$, covariate z_i for sequence (tree) i.

(mHSMM)

1. $(S_{i,t})_t$ unidirectional (Left-right) SMM with state duration potentially dependent on z_i:
 \[\mathbb{P}[S_{i,[t+1:t+d]} = s | z_i] := f(d | s, z_i) \]

2. $(O_{i,t}^{(1)})_t$ independent given $(S_{i,t})_t$ with emission distribution potentially dependent on z_i:
 \[\mathbb{P}[O_{i,t}^{(1)} = x | S_{i,t} = s, z_i] = g_1(x | s, z_i) \]

3. $(O_{i,t}^{(2)})_t$ independent given $(S_{i,t})_t$ with emission distribution potentially dependent on z_i:
 \[\mathbb{P}[O_{i,t}^{(2)} = x | S_{i,t} = s, z_i] = g_2(x | s, z_i) \]

(reg-HSMM)

1. $(S_{i,t})_t$ unidirectional SMM with state duration potentially dependent on z_i:
 \[\mathbb{P}[S_{i,[t+1:t+d]} = s | z_i] := f(d | s, z_i) \]

2. $(O_{i,t}^{(1)})_t$ independent given $(S_{i,t})_t$ with emission distribution potentially dependent on z_i:
 \[\mathbb{P}[O_{i,t}^{(1)} = x | S_{i,t} = s, z_i] = g(x | s, z_i) \]

3. $(O_{i,t}^{(2)})_t$ follows a regression model on time, does not depend on $(S_{i,t})_t$ and may depend on z_i:
 \[O_{i,t}^{(2)} \sim \mathcal{D}(\theta(t)) \]

State transitions are necessarily $s \rightarrow s + 1$
Goals

- To emphasize using simulations that considering wrong models may lead to wrong interpretation.
- Illustrate that BIC may select the correct model
- Application to our true data set

Remark

In (reg-HSMM) we will consider a simple parametric regression model: two-piece “histogram” (Bernoulli single change-point model).
Simulations under true (reg-HSMM) and estimation based on (mHSMM)

Simulations under (reg-HSMM) with
- SMM depends on cultivar (duration probabilities)
- Observed process 1 $O^{(1)}$ (HSMM variable) independent on cultivar
- Observed process 2 $O^{(2)}$ (regression variable) independent on cultivar

Estimation with (mHSMM) with
- SMM depends on cultivar (duration probabilities)
- $O^{(1)}$ (HSMM variable) depends on cultivar
- $O^{(2)}$ (HSMM variable) depends on cultivar

(ERRONEOUS) conclusion: Emission distribution for $O^{(2)}$ depends on cultivar \Rightarrow cultivar effect on $O^{(2)}$.
Simulations under true (mHSMM) and estimation based on (reg-HSMM)

Simulations under (mHSMM) with
- SMM independent on cultivar
- Observed process $O^{(1)}$ (HSMM variable 1) depends on cultivar
- Observed process $O^{(2)}$ (HSMM variable 2) depends on cultivar

Estimation with (reg-HSMM) with
- SMM depends on cultivar
- O^{1} (HSMM variable) depends on cultivar
- O^{2} (reg variable) depends on cultivar

(Erroneous) conclusion: dynamics for $O^{(2)}$ depends on cultivar ⇒ cultivar effect on zone length with low flowering probability on $O^{(2)}$
BIC for model selection

\[\text{BIC} = \log(\text{likelihood}) - 0.5 \nu \log(\text{nb obs}) \]
(maximize over models; \(\nu \) number of free parameters)

- 50 simulations of \(n \) trajectories of length \(T \) under either (mHSMM) or (reg-HSMM) (parameters as in previous examples).

- Estimate both models and compute BIC.

Simulation under (reg-HSMM);
\(n = 50, 10, 8, 6, 4, 3, 2; T = 240, 50 \)

Boxplot of BIC values over 50 simulations (\(n = 2, T = 50 \))

<table>
<thead>
<tr>
<th>nb trajectories (n)</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct selection rate (BIC)</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Rate of BIC selecting (reg-HSMM)
BIC for model selection: simulation under mHSMM

\[\text{BIC} = \log(\text{likelihood}) - 0.5 \, \nu \, \log(\text{nb obs}) \]
(maximize over models; \(\nu \) number of free parameters)

▶ 50 simulations of \(n \) trajectories of length \(T \) under either (mHSMM) or (reg-HSMM) (parameters as in previous examples).

▶ Estimate both models and compute BIC.

Simulation under (mHSMM); \(n = 50, 10, 8, 6, 4, 3, 2; \ T = 240, 50 \)

<table>
<thead>
<tr>
<th>nb trajectories (n)</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct selection rate (BIC)</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Rate of BIC selecting (mHSMM)

Boxplot of BIC values over 50 simulations (\(n = 2, \ T = 50 \))
Results on true data set

Example: cultivar 1, variable 1 as (reg-HSMM), variables 2 and 3 as (mHSMM)

- Categorical reg variable with 5 categories, one change point.
- BIC mHSMM = -2,755 < BIC regHSMM = -2,542
- Suggests (either?) unique, synchronous change for variable 1, independent on HSMM states
- Complicates model selection

Apple tree data set: cultivar 1. Marginal distribution of (reg) variable 1, emission distribution for mHSMM variables 2 and 3 and restored state sequences (3 states: sufficient?)
Conclusion et perspectives

▶ Summary

▶ Classic model for fruit tree flowering (and other plant/organ development) : multi-response HSMM
▶ Observations on our data: potential alternative model
▶ Model misspecification can lead to erroneous biological conclusions
▶ BIC for model selection has promising behaviour

▶ Perspectives

▶ Evaluation of BIC on a realistic model (parameters estimated from data, multiple change-point models with common parameters between trajectories or other regression models)
▶ Study of the consistency of BIC in model selection
▶ Exploration of the combinatorics of models on true data (which variables are reg-, which ones are mHSMM and then, with how many change-points / states...?)