

Modeling and parameter estimation of a hidden multi-chain model of typhoid fever in Mayotte

Ibrahim Bouzalmat¹, Benoîte de Saporta¹, Solym Manou-Abi² ¹ IMAG, Montpellier Univ, France, ² IMAG, Montpellier Univ, CUFR Mayotte, France

5-7 June 2023

Ibrahim BOUZALMAT

Typhoid fever

Typhoid fever is a bacterial infection that is caused by the bacterium Salmonella typhi.

Symptoms

- · Fever that starts low and increases daily
- Headache, weakness and fatigue, muscle aches
- Stomach pain, diarrhea or constipation

Typhoid Fever

Incubation

- 1 to 3 weeks
- Transmission
 - direct : Fecal-oral transmission by ingestion of bacteria from contaminated stool (dirty hands)
 - indirect : by ingestion of water or food eaten raw (vegetables, seafood ...) and soiled by infected human stool (sewers, rainwater evacuation systems, etc.)

Typhoid Fever in Mayotte

- Endemic disease in Mayotte: around 100 cases in 2022.
- Notifiable disease

Figure: Weekly cumulative number of new reported cases of typhoid fever between 2018 and 2022 in Mayotte. (source: ARS Mayotte)

PMSMA

Ibrahim BOUZALMAT

Objective

Propose a mathematical model to describe the transmission dynamics of typhoid in Mayotte

Estimate its parameters from a dataset of hospitalizations

Model

• Population characteristics :

▶ Large population of Susceptibles: ~ 300 000 inhabitants

- Small population of Infected: ~ 40 cases per year on average
- ⇒ Stochastic model of the counting process type

• Disease dynamics:

 \Rightarrow Two-dimensional pure jump Markov process $(E_t, I_t)_{t \ge 0}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two-compartment model : Exposed-Infected

- \triangleright λ : Rate of contamination from person to person
- \triangleright ν : Rate of exogenous contamination
- $\blacktriangleright \alpha$: Rate of individual incubation
- $\blacktriangleright \mu$: Rate of isolation

 \Rightarrow Estimate the rates describing the dynamics of typhoid fever transmission (λ, ν, α and μ)

- The jump times: not observed
- The post jump locations: not observed
- ► Available observations O_n: Daily cumulative number of new reported (isolated) cases = cumulated number of -1 jumps in the process I_t during a day
- \Rightarrow Difficulty: Classical estimation methods
 - Continuous-time model with discrete observations
 - ► No analytical / numerical expression for likelihood

Estimation Strategy

• Derive estimators of λ , ν , α and μ (moments estimators) for the complete observations framework (cumulative + number of exposed and infected)

$$(\lambda, \nu, \alpha, \mu) = f(\boldsymbol{E}^*, \boldsymbol{I}^*, \boldsymbol{R}^*, \boldsymbol{N}^*),$$

where

$$E^* = \lim_{t \to +\infty} \mathbb{E}_{(e_0, i_0, n_0)}[E_t], \quad I^* = \lim_{t \to +\infty} \mathbb{E}_{(e_0, i_0, n_0)}[I_t], \quad R^* = \lim_{t \to +\infty} \mathbb{E}_{(e_0, i_0, n_0)}[E_t I_t],$$

and

$$N^{\star} = \lim_{t \to +\infty} \frac{\mathbb{E}_{(e_0, i_0, n_0)}[N_t]}{t}$$

 $N_t := \sum_{k=0}^{\lfloor t \rfloor} O_k$ describing the cumulative number of new isolated cases from 0 to time *t*

 \Rightarrow Estimate E^* , I^* , R^* for our case: discrete time hidden observations framework

PMSMA

Estimation Strategy

Hidden multi-chain Markov model (HMCMM)

Figure: HMCMM emission scheme.

► $(Z_n)_{n \in \mathbb{N}^*} = (E_{n-1}, I_{n-1}, I_n)_{n \in \mathbb{N}^*} \Rightarrow (Z_n, O_n)$ is a three-dimensional HMM with a standard observation scheme whose characteristics are given by the triple $M = (Q, \psi, \rho)$

Estimation Steps

► Aim: Estimate the parameters of the HMM $M = (Q, \psi, \rho)$ by adapting the Baum-welch (EM) algorithm & derive an estimate of the transition matrix p of the chain (E_n, I_n)

• Rewrite the principal functions of the EM algorithm: Forward and Backward probabilities

• Adapted Baum-welch algorithm : Starting from an initial model $M^{(0)}$, the re-estimations are given by

$$\begin{aligned} Q_{(e,i,j),(e',i',j')}^{n+1} &= \frac{\sum_{t=1}^{T-1} \xi_{(e,i,j),(e',i',j')}^{n}(t)}{\sum_{t=1}^{T} \gamma_{(e,i,j)}^{n}(t)} \delta_{i'=j} \\ \psi_{(e,i,j)}^{n+1}(o) &= \frac{\sum_{t=1}^{T} \mathbb{1}_{o_t=o} \gamma_{(e,i,j)}^{n}(t)}{\sum_{t=1}^{T} \gamma_{(e,i,j)}^{n}(t)}, \ \rho_{e,i,j}^{n+1} &= \gamma_{(e,i,j)}^{n}(1) \\ \rho_{(e,i),(e',i')}^{n+1} &= \frac{\sum_{j' \in \mathbb{N}} Q_{(e,i,j),(e',j,j')}^{n+1} \rho_{e,i,j}^{n+1}}{\sum_{j \in \mathbb{N}} \rho_{e,i,j}^{n+1}}, \end{aligned}$$

PMSMA

where

$$\begin{aligned} \xi^{n}_{(e,i,j),(e',i',j')}(t) &= \frac{\alpha^{n}_{(e,i,j)}(t)p^{n}_{(e',i'),(,,j')}p^{n}_{(e,i),(e',i')}\psi^{n}_{(e',i',j')}(o_{t+1})\beta^{n}_{(e',i',j')}(t+1)}{p^{n}_{(e,i,j)\sum(e,i,j)\in\mathbb{N}^{3}}\alpha^{n}_{(e,i,j)}(t)\beta^{n}_{(e,i,j)}(t)}\\ \gamma^{n}_{(e,i,j)}(t) &= \frac{\alpha^{n}_{(e,i,j)}(t)\beta^{n}_{(e,i,j)}(t)}{\sum_{(e,i,j)\in\mathbb{N}^{3}}\alpha^{n}_{(e,i,j)}(t)\beta^{n}_{(e,i,j)}(t)}.\end{aligned}$$

• Estimate the moments E^* , I^* and R^* of the chain (E_n, I_n) from the optimal transition matrix \hat{p} obtained using Monte Carlo simulations

► Complete observations: We run a 10000 parallelized simulation of the process (E_t, I_t) starting from $(E_0, i_0) = (0, 0)$ with

$$\lambda=$$
 0.05, $\mu=$ 0.2, $lpha=$ 0.1 and $u=$ 0.015

• Fixed time step $\Delta t = 1 day \Rightarrow (E_n, I_n)$ and the observations O_n

Number of observations n = 10000

Parameters	Estimates	Confidence intervals (95%)	
$\lambda = 0.05$	0.050	[0.049, 0.0506]	
$\mu =$ 0.2	0.20	[0.1998, 0.2001]	
$\alpha = 0.1$	0.100	[0.0998, 0.1002]	
u = 0.015	0.015	[0.0149, 0.01506]	

 \Rightarrow The accuracy of the estimates depends on the number of simulated trajectories and the number of observations

Numerical simulation

► Hidden framework: Parameters initialization: $\lambda^{(0)} \in [0.04, 0.07]$, $\mu^{(0)} \in [0.185, 0.25], \alpha^{(0)} \in [0.09, 0.130]$ et $\nu^{(0)} \in [0.013, 0.02]$

- For each quadruplet value $(\lambda_i^{(0)}, \mu_i^{(0)}, \alpha_i^{(0)}, \nu_i^{(0)})$ for i = 1, ..., 15:
 - Estimate $P^{(0)}$ and $\psi^{(0)}$ by Monte Carlo simulations
 - Executing the Baum-Welch algorithm adapted and choosing

 $\hat{p}^m = max_{\hat{p}^n}\mathbb{P}(O|M^n)$

Number of observations	<i>n</i> = 10000		
Truncation of hidden state space	N = 3	<i>N</i> = 4	<i>N</i> = 5
$\hat{\lambda}^n$	0.050	0.049	0.05
$\hat{\mu}^{n}$	0.189	0.196	0.209
$\hat{\alpha}^{n}$	0.098	0.101	0.102
$\hat{ u}^n$	0.0146	0.015	0.015

Hidden framework:

- Truncation of the state space does not have a significant impact on the estimate
- The quality of parameter estimation depends essentially on the quantity of data available:
 - Improves the local convergence of the EM
- Improves the estimate of N^* which depends essentially on the number of observations
 - It also leads to a significant increase in execution time.

 \Rightarrow The dataset provided by the Mayotte ARS (1580 observations) proved insufficient to obtain reliable and accurate estimates of the model parameters

A (10) F (10)

Simplified model

• Linear birth-death-immigration (LBDI) model

 \Rightarrow Aim: Estimate the contamination and isolation rates (λ , ν and μ) from hospitalization data for Mayotte

► Kolmogorov equation: Explicit expression of λ , ν and μ as functions of $P_{0,0}(\Delta t)$, $P_{0,1}(\Delta t)$ and $P_{1,0}(\Delta t)$

$$(\lambda, \nu, \mu) = f(P_{0,0}(\Delta t), P_{0,1}(\Delta t), P_{1,0}(\Delta t))$$

• Results based on hospitalisation data for Mayotte

▶ Initialization : $\lambda^{(0)} \in [0.05, 0.08], \mu^{(0)} \in [0.11, 0.25]$ and $\nu^{(0)} \in [0.015, 0.03]$

 \Rightarrow The estimated parameters are

 $\hat{\lambda} = 0.054, \quad \hat{\mu} = 0.132 \text{ and } \hat{\nu} = 0.017$

- $\hat{\lambda} < \hat{\mu}$: coherent with observations
- Person-to-person transmission plays a significant role in the spread of the disease in Mayotte
- The average duration of isolation is 7.5 days
- Water quality plays an important role in the spread of typhoid fever in Mayotte

・聞き ・ヨキ ・ヨキ

Conclusion & Perspective

 \Rightarrow Conclusion :

Continuous-time model with discrete observations:

• Derive estimators of parameters for the complete observations framework (in terms of transition probabilities or moments)

► No analytical / numerical expression for likelihood

• The hidden framework: Hidden Multi-Chain Markov Model (HMCMM) or Hidden Markov Model (HMM)

 \Rightarrow Perspective:

